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Abstract

Cell lineage tracking is a long-standing and unresolved problem in biology. Microfluidic tech-

nologies have the potential to address this problem, by virtue of their ability to manipulate

and process single-cells in a rapid, controllable and efficient manner. Indeed, when coupled

with traditional imaging approaches, microfluidic systems allow the experimentalist to follow

single-cell divisions over time. Herein, we present a valve-based microfluidic system able to

probe the decision-making processes of single-cells, by tracking their lineage over multiple

generations. The system operates by trapping single-cells within growth chambers, allowing

the trapped cells to grow and divide, isolating sister cells after a user-defined number of divi-

sions and finally extracting them for downstream transcriptome analysis. The platform incor-

porates multiple cell manipulation operations, image processing-based automation for cell

loading and growth monitoring, reagent addition and device washing. To demonstrate the

efficacy of the microfluidic workflow, 6C2 (chicken erythroleukemia) and T2EC (primary

chicken erythrocytic progenitors) cells are tracked inside the microfluidic device over two

generations, with a cell viability rate in excess of 90%. Sister cells are successfully isolated

after division and extracted within a 500 nL volume, which was demonstrated to be compati-

ble with downstream single-cell RNA sequencing analysis.

Introduction

One of the biggest challenges in quantitative biology is to better understand the decision-mak-

ing process of cells. Over the past 20 years, a change in the scale of investigation from cell pop-

ulations to the single-cell level has already brought numerous insights of such processes [1–3].

The primary benefit of performing experiments at the single-cell level is the ability to reveal

the underlying transcriptional heterogeneity of both normal and pathological cells [4, 5]. Fur-

thermore, single-cell studies have already provided evidence that gene expression variability is

a property of cell fate decision making [3, 6].
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Cellular differentiation is the process by which any pre-committed cell acquires its identity,

and can be viewed as a dynamic process wired by the underlying gene regulatory network

(GRN). Cells can be thought of as "moving particles" within a landscape, with the cell state

space shaped by the GRN state [7]. According to this view, within this landscape, points of sta-

bility are referred as “steady states” and can be represented by attraction wells. Cells can escape

their self-renewing steady state through a rise in gene expression variability and then explore

freely, to some extent, the landscape to finally reach a new state of equilibrium; the differenti-

ated state [7]. Single-cell analysis of in vitro and in vivo differentiation models have confirmed

that this cellular process is indeed characterized by a global rise in gene expression variability

[8–12]. That said, the way that gene expression variability is established across cell generations

is still poorly understood. Such a fundamental question is likely to be of critical importance as

it seems to be a conserved phenomenon across both biological systems and species [13–16].

Indeed, at the organism scale, during differentiation, cells must maintain their lineage identity

through mitosis and eventually reach their differentiation state. Based on recent studies, sup-

port for this state memory comes from the inheritance of mRNA levels from mother cells to

daughter cells [13]. This transmission is, with high probability, supported by the inheritance of

epigenetic modifications allowing the maintenance of gene-specific transcription levels over

cell divisions [16, 17]. Recently, it has been noted that in some genes, in which expression is

variable amongst an isogenic cell population, expression is correlated between genealogically

related cells [13, 14]. For some of these “memory genes”, the correlation in expression may last

for tens of generations. These data, gathered on self-renewing cells, imply a gene-specific tran-

scriptional memory over several cell generations [13].

We recently developed experimental methods to recover related cells after one (first genera-

tion) and two (second generation) cell divisions, in order to investigate how cells reconcile the

constraints of transcriptional memory and the rise in gene expression variability during the

differentiation process [18]. Transcriptomics comparisons of self-renewing and differentiating

sister and cousin cells indicated that transcriptional memory is gradually erased as differentia-

tion proceeds. While (non-genetic) fluorescent barcoding techniques allow for the identifica-

tion and tracking of individual cells and their lineage information for up to two cell divisions,

it becomes challenging to extend this analysis to subsequent generations due to the difficulty

in achieving high levels of fluorescent multiplexing [18]. Whilst other approaches do allow

cell-tracking over multiple cell generations coupled with transcriptomics analysis, they require

heavy genetic modifications (not compatible with the life span of primary cells) and do not

provide the capability to track cell proliferation at the resolution of a single-cell division [19–

21]. In contrast, microfluidic tools are recognized as being adept at performing single-cell

manipulations [22], including the study of gene expression at the single-cell level [23, 24].

Moreover, microfluidic systems are well-suited to controlling heat and mass transfer, in a

rapid and precise manner, and since they can be easily integrated with optical detection sys-

tems and imaging modalities, long-term tracking of cellular behavior becomes simple [25]. At

a fundamental level, microfluidic cell culture systems have many advantages over conventional

cell culture methods, including low reagent consumption, multiplexed operation and easy

automation of cell culturing tasks [26]. Accordingly, the ability to monitor single-cell lineages

and analyze differences between sister cells post division becomes possible, without needing to

genetically modify mother cells.

Recently, several microfluidic-based cell culture systems for tracking cell lineage have been

reported. For example, Kimmerling et al. used parallelized trapping structures to track the

lineage of murine CD8+ T-cells and lymphocytic leukemia cell lines [14]. Specifically, cells

trapped in individual hydrodynamic traps are grown in a serpentine-shaped parallel micro-

channel network. After division, sister cells are separated using fluid flow through traps and
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extracted via the device outlet. Although the device could be used to track cell lineage over

multiple generations, fluid flow conditions and hydrodynamic trap geometries must be opti-

mized for each cellular population. Additionally, it is not possible to address divided cells in an

independent manner, and thus extracting specific sister cells is challenging. Other microfluidic

approaches have been used to track and extract targeted cells from culture [27], but these

almost always require extraction volumes (a few microliters) that are far too large for down-

stream transcriptomics analysis. Conversely, other approaches, such as those based on Flui-

digm’s Polaris system[28], allow single-cell transcriptomics measurements, but cannot track

cell lineage over multiple generations. Accordingly, there remains a pressing and unmet need

for an automated experimental platform that can perform both cell lineage tracking and sin-

gle-cell extraction within volumes less than 1μL. To this end, we now describe the design, fab-

rication and development of an automated image-based microfluidic platform for tracking

non-adherent single-cell lineage. Essential characteristics of the system include: (i) integrated

microfluidic chambers for single-cell trapping, (ii) the ability to monitor cell growth over

extended time periods, (iii) the ability to separate sister cells after division, (iv) facile realloca-

tion of sister cells to monitor second and third division events and (v) extraction of cells for

downstream transcriptomics analysis, using MARS-seq [29], a UMIs (Unique Molecular Iden-

tifier) and plate-based single-cell RNAseq protocol.

Materials and methods

Microscope incubator setup

To monitor cell proliferation in vitro, in vivo environmental conditions must be mimicked

using a microscope placed inside an incubator. An inverted microscope (Eclipse Ti-E, Nikon,

Egg, Switzerland) was enclosed within a custom-designed polycarbonate incubation box (Life

Imaging Services, Basel, Switzerland) to provide optimum (5% CO2 and 95% humidity, at

37˚C) proliferation conditions. The box was then connected to an air-heater (Life Imaging Ser-

vices, Basel, Switzerland). An in-house CO2 chamber connected to a 5% CO2 mixture tank

(PanGas, Dagmersellen, Switzerland) with electronic flow control (Red-y, Vögtlin Instru-

ments GmbH, Muttenz, Switzerland) was attached to the microfluidic device on a motorized

xy translation stage (Mad City Labs GmbH, Kloten, Switzerland). An optical shutter was con-

trolled by the ProScan III automation system (ProScan III, Prior Scientific Instruments

GmbH, Jena, Germany) and used to regulate light exposure. A scientific complementary

metal-oxide-semiconductor (sCMOS) camera (pco edge, PCO GmbH, Kelheim, Germany) in

conjunction with a Plan Fluor 10X/0.3 NA objective (Nikon, Egg, Switzerland) was used to

image cells for periods between 24 and 48 hours. A flow EZ™ pressure-based flow controller

(Fluigent Deutschland GmbH, Jena, Germany) was used to deliver cells and reagents into the

microfluidic device. MH1 solenoid valves (Festo AG, Lupfig, Switzerland) were incorporated

within the microfluidic device and used to manipulate cells and automate the whole experi-

mental process via a custom-developed MATLAB1 code.

Microfluidic device design and operation

The two-layer microfluidic device was designed to trap and allow proliferation of cells in a

controlled manner. Fluid flow within the microfluidic device was generated using polydi-

methylsiloxane (PDMS)-based pneumatic microvalves [30]. The microfluidic device consists

of a control layer and a fluidic layer, each consisting of a network of channels. The control

layer is located above or below the fluidic layer and can be deformed so as to establish or termi-

nate flow. Such valves can be designed to be "push-up" or "push-down" in nature, depending

on the relative locations of the control and fluidic layer. Push-up valves are more desirable for
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applications involving eukaryotic cell manipulations within deeper fluidic channels, since they

offer lower leakage flow compared with push-down valves. Push-down valves are more suit-

able when different materials are needed as a substrate material for microfluidic device instead

of PDMS, for example when molecules are patterned on a glass slide [31]. In the current

device, we used a push-up valve structure, since the device was exclusively intended for cultur-

ing and manipulating eukaryotic cells.

The two-layer microfluidic device integrates eight chambers for the long-term monitoring

(> 24 hours) and tracking of sister stem cells over two generations (Fig 1). Single-cells were

trapped inside proliferation chambers using control valve 1, which upon actuation, prevents

fluid from entering the trapping region. Delivery of fresh cell medium to trapped cells is

accomplished by opening bypass flow channels on each side of each chamber and control

valve 2. The medium delivery process starts with a primary medium flow, firstly divided into

many bypass flow paths. As noted, fluid flow through the bypass channels is regulated using

Fig 1. Microfluidic single-cell processing platform and experimental workflow. (A) The microfluidic device consists of cell inlet for delivering cells into the

chambers, medium inlet for supplying fresh medium into the chambers after trapping single-cells, 8 individually addressable proliferation chambers, (B) a

valve-based junction for the separation of the sister cells after division with a feedback channel that allows relocation of the sister cells after division from the

separation area to the cell trapping chambers and (C) extraction wells for the collection of the sister cells. The workflow of the device comprises trapping of a

single-cell inside a growth chamber, cell growth and division, separation of the sister cells after division and extraction of the individual sister cells for

downstream transcriptome analysis.

https://doi.org/10.1371/journal.pone.0288655.g001
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control valves, which maintain a constant circulation of fresh medium around the cell trapping

chambers when open (Fig 1A). Sister cells separation, relocation of cells to new trapping cham-

bers and single cell extraction were also performed within the device and are shown in Fig 1B

and 1C. Specifically, after division, sister cells are manoeuvred into a separation zone that incor-

porates two control valves. Actuation of one of these valves ensures that one of the cells can be

driven towards the extraction area, while the other cell will remain trapped; therefore, sister cells

can be separated (Fig 1B). The feedback channel allows relocation of sister cells after division

from the separation zone into the cell trapping chambers. Sister cells separated after division

flow through the feedback channel upon actuation of the control valves (Fig 1B) and are subse-

quently placed in individual trapping chambers. After subsequent division events, new sister

cells can be separated and either extracted from the device or relocated back to a trapping cham-

ber for analysis of the third generation. The extraction area includes two independently address-

able, 1 mm diameter and 3 mm depth open wells for the collection of sister cells (Fig 1C). The

current microfluidic device integrates eight chambers, and thus allows monitoring of up to three

generations from a single-cell (from one parent cell to eight daughter cells).

Cell culture

6C2 chicken erythroblast cells, transformed by the avian erythroblastosis virus (AEV) carrying

a stably integrated mCherry transgene, were maintained in αMinimal Essential Medium

(Thermo Fischer Scientific, Basel, Switzerland) complemented with 10% Fetal Bovine Serum

(FBS, Life Technologies, Zug, Switzerland), 1% Normal Chicken Serum (Thermo Fischer Sci-

entific, Basel, Switzerland) [32], 1% penicillin and streptomycin (10,000 U/ml, Thermo Fischer

Scientific, Basel, Switzerland), 100 nM β-mercaptoethanol (Sigma-Aldrich, Buchs, Switzer-

land), and kept at 37˚C with 5% CO2 in an incubator (New Brunswick Galaxy 170 S, Eppen-

dorf, Schönenbuch, Switzerland).

T2EC cells were extracted from the bone marrow of white leghorn chicken embryos

(INRA, Tours, France) [33]. The cells were cultured in αMinimal Essential Medium (Gibco),

supplemented with 1 mM HEPES (Sigma-Aldrich), 10% Fetal Bovine Serum (FBS, BioWest),

1% Penicillin-Streptomycin (10,000 U/mL, Gibco), 100 nM β-mercaptoethanol (Sigma-

Aldrich), 1 mM dexamethasone (Sigma-Aldrich), 5 ng/mL transforming growth factor-alpha

(TGF-α, Peprotech) and 1 ng/mL transforming growth factor-beta (TGF-β, Peprotech), and

kept at 37˚C with 5% CO2 in an incubator.

ScRNA-seq library preparation

Single-cell RNA library preparation was performed using an adapted version of the MARS-seq

protocol (Massively parallel single-cell RNA sequencing) [29], as described in detail elsewhere

[34]. The complete library consisted of 10 microfluidics-sorted cells and 86 FACS-sorted cells.

RNA sequencing

Sequencing was performed on a Nextseq500 sequencer (Illumina, IGFL sequencing platform

(PSI), Lyon, France), with a custom paired-end protocol to avoid a decrease in sequencing

quality on read1 due to a high number of T bases added during polyA reading (130pb on

read1 and 20pb on read2), and a targeted depth of 200 000 raw reads per cell.

Data pre-processing

Fastq files were pre-processed using an in-house bio-informatics pipeline on the Nextflow

platform (Seqera Labs, Barcleona, Spain) [35], as described elsewhere [34]. Briefly, the first
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step removed Illumina adaptors sequences. The second step de-multiplexed the sequences

according to their plate barcodes. Next, all reads containing at least 4 T bases following the cell

barcode and UMI sequences were kept. Using the UMItools whitelist, the cell barcodes and

UMI were extracted from the reads. The sequences were then mapped on the reference tran-

scriptome (Gallus GallusGRCG6A.95 from Ensembl) and UMIs were counted. Finally, a count

matrix was generated.

Quality control and data filtering

All analyses were carried out using R software (version 4.2.1 [36]). Cells were filtered based on

several criteria: read number, gene number, count number and ERCC content. For each crite-

rion the cut off values were determined based on the SCONE [37] pipeline and calculated as

follows:

Mean (criterion value) - 3*sd (criterion value). After the cell filtering step there remained 7

chip-sorted cells and 82 FACS sorted control cells. Among the chip-sorted cells, 4 of these

were sister cells (two couples of cells arising from the mitosis of the same mother cells), and 3

were orphan cells, meaning cells for which the other sister cell was eliminated from the dataset

due to poor quality, either from lack of recovery or insufficient lysis. Based on work by Breda

et al. [38], genes were kept in the data set if they were expressed on average in every cell (in

average 1 UMI per cell).

Normalization

The filtered matrix was normalized using SCTransform from the Seurat package [39] and cor-

rected for sequencing depth.

UMAP

Dimensionality reduction and visualization was performed using UMAP [40] default

parameters.

Results

Mother cell capture and first division

The microfluidic device was used to process two different (non-adherent) cell models, 6C2

and T2EC. 6C2 cells are transformed erythrocytic progenitors and constitutively express a

mCherry transgene. T2EC cells are primary erythrocytic progenitors, extracted from chicken

bone marrow (see Materials and Methods). Experiments on both cell models were performed

independently. Cells were introduced using the pressure-based flow controller at a concentra-

tion of 106 cells/mL suspension, with single-cells being trapped individually in trapping cham-

bers (i.e. one cell per chamber), as shown in Fig 2. Trapped (unrelated) single-cells, referred to

as mother cells, were then monitored over a period of 24 hours. Cell divisions were observed

for both single 6C2 cells and T2EC cells (Fig 2) after approximately 6 and 10 hours of culture

within the microfluidic device. The average cell division rate for both models (over a sample of

20 single-cells) matched the expected division rate of bulk 6C2 and T2EC, and in a time frame

known for division of those cells in regular culture conditions [32].

Sister cells separation

After cell division occurred, sister cells in a given chamber were separated. In this regard, it is

noted that 6C2 sister cells spontaneously separated after mitosis, while T2EC cells stayed

attached to each other, thus necessitating enzymatic dissociation. Specifically, we temporarily
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replaced the culture medium with Accutase1, an enzymatic complex of marine origin, pre-

senting proteolytic and collagenolytic activity and less toxic than Trypsin, thus ensuring cell

dissociation under mild conditions. Accordingly, T2EC cell pairs were dissociated by flowing

Accutase1 (ready to use - 1X) through the chamber at 37˚C for a period of 30–45 minutes,

with separation being monitored by direct brightfield observation (Fig 3). Accutase1 self-

inactivates after 30–45 minutes at 37˚C, and therefore there is no need flush the solution out

after dissociation has occurred.

Sister cells relocation and second division

We next separated the sister cells after the first cell division, and relocated each sister in a dif-

ferent chamber, in order to allow secondary cell division events. Using the T2EC cell model,

we located a chamber where a division had occurred (i.e. observation of a cell doublet). The

sister cells, resulting from the first division of the mother cell, were separated using Accutase

as described above and were moved towards the separation zone which incorporates two con-

trol valves (Fig 1B). The fluid flow was precisely controlled with the pressure pump by apply-

ing a pressure of approximately 10 mbars. Accordingly, sister cells moved into a long

serpentine channel that connects cell chambers to the separation area in a controlled manner.

When the cells were flowing through the serpentine channel to the separation area a sufficient

cell-to-cell distance or spacing (a few hundreds of microns) always occurred. In the separation

area, actuation of one of the control valves ensured that one of the cells was driven towards

relocation area (or extraction area), while the other cell remained trapped (S1 Video). The

feedback channel allowed relocation of sister cells after division from the separation zone into

the cell trapping chambers. Sister cells separated after division circulated through the feedback

channel upon actuation of the control valves and fine control of flow pressure, and were subse-

quently placed in individual trapping chambers (Fig 3).

Fig 2. Single-cell proliferation experiments. (A) Single 6C2 cells, (B) Single T2EC cells were trapped and monitored over a period of 24 hours. Time lapse

brightfield images for one chamber were acquired in every 5 minutes. The brightfield images show that cell full division occurs in each chamber within 20

minutes. The scale bar is 50 μm.

https://doi.org/10.1371/journal.pone.0288655.g002
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Sister cells extraction

Extraction experiments were only performed on 6C2 cells, since they consist of transformed

erythrocytic progenitors and constitutively express a mCherry transgene. This allows facile

monitoring of the cell extraction process via fluorescence imaging. As noted, the most chal-

lenging task within the experimental workflow is the extraction and collection of selected cells

within a fluid volume no larger than 500 nL. Such a requirement is set by the need to ensure

compatibility with downstream scRNA-seq analysis [41]. Indeed, the first step in scRNA-seq

library construction involves reverse transcription of all mRNAs from each individual cell.

This process must be carried out in a very small reaction volume (<4 uL) since it is prone to

molecular inhibition due to the high number of proteins present in the culture medium used

for cell isolation. The volume in which the cell should be isolated must be kept as low as possi-

ble (below 20% of the total reaction volume) and be reproducible for each isolated cell, to min-

imize the variability in efficacy of the reverse transcription from one cell to another.

Each selected cell was delivered to the pre-punched extraction well by applying 10 mbar of

pressure from the medium inlet, resulting in a cellular velocity of 10 μm/s, with fluorescence

imaging being used to track single-cells after their delivery into the extraction well. Next, sin-

gle-cells were extracted from the device using a thin graduated capillary tube (Fig 4A). The

glass capillary tube was inserted into the well to extract the cell via capillarity. The extraction

area includes two independently addressable, 1 mm diameter and 3 mm depth open wells for

Fig 3. Single T2EC cell proliferation and sister cell relocation. A single T2EC cell was trapped and monitored by time-lapse brightfield microscopy, with

images being acquired every 5 minutes. During sister cell relocation, the first sister is kept in the initial chamber, with the second sister being moved in a new

chamber, by applying 10 mbar of pressure from the medium inlet which allows precise control of the single-cell movement. The scale bar is 50 μm.

https://doi.org/10.1371/journal.pone.0288655.g003

PLOS ONE An image-guided microfluidic system for single-cell lineage tracking

PLOS ONE | https://doi.org/10.1371/journal.pone.0288655 August 1, 2023 8 / 14

https://doi.org/10.1371/journal.pone.0288655.g003
https://doi.org/10.1371/journal.pone.0288655


the collection of sister cells (Fig 1C). Cells were led to the pre-punched extraction wells, then,

the capillary glass was plugged in the well. Since the tip diameter of the capillary glass is smaller

than the well diameter, the capillary glass can be easily introduced into the well. As aforemen-

tioned, the driven pressure is very low (~10 mbars) which results in a cell velocity of 10 μm/s

allowing an easy tracking of the cell inside the extraction well. After a single cell was driven

inside the well, fluid flow was stopped during the extraction process and the single cell was col-

lected via the capillary flow. Therefore, the fluid, included the single cell, did not flow out of

the well. Additionally, the well has a reservoir volume of 2.5 μL, significantly larger than the

extraction volume and thus the fluid containing a single cell would not flow out during the

extraction process.

Furthermore, the extraction volume could be precisely controlled inspecting the gradua-

tions on the capillary, and fluorescence imaging ensured that a desired cell had been success-

fully extracted (Fig 4B). Significantly, this method proved to work successfully for extraction

volumes less than 500 nL, and was therefore compatible with downstream scRNA-seq analysis.

Capture of 6C2 mother cells, first division and extraction of sister cells for

scRNA-seq downstream analysis

We performed a proof-of-concept experiment on 6C2 cells, in which five mother cells were

isolated in independent chambers. Each chamber was then monitored over an extended period

of time, allowing observation of first division events by time-lapse brightfield microscopy.

After division, the resulting sister cells were extracted from the microfluidic device, as

described previously. After extraction, each of the ten isolated sister cells was directly trans-

ferred in lysis buffer.

Before constructing the library, 86 6C2 FACS-sorted single-cells, from a population where

relationships between the cells were unknown, were barcoded and added to the cell pool

Fig 4. Sisters cell extraction. (A) A single 6C2 sister cell is monitored using fluorescence imaging in the extraction well. Manual extraction of this cell is

performed using a small glass capillary. (B) Fluorescence images of the extraction well before and after the extraction of a single sister cell. The scale bars are

100 μm.

https://doi.org/10.1371/journal.pone.0288655.g004
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experiment. FACS-sorted cells were used as controls, since FACS sorting is the reference

method for isolating single-cells for subsequent scRNA-seq analysis. Following cell isolation,

within each sample, ERCC spikes (External RNA Controls Consortium [42]) were added.

ERCCs consist of 92 different synthetic RNAs species and are used as experimental controls,

since they are inserted in a known concentration and will undergo all the steps of library con-

struction, as do the cellular mRNAs. Each cell’s mRNA and associated ERCC were barcoded

with a unique cell barcode and UMI, by reverse transcription using RT primers for which the

cell barcode sequence was known (see Methods section).

The scRNA-seq library, consisting of the 10 microfluidically-sorted single-cells and the 86

FACS-sorted single-cells, was then generated using a protocol detailed elsewhere [34] and

sequenced as described previously. As noted, raw sequencing data were processed on using an

in-house bio-informatics pipeline, filtered and normalized. As a quality control step, the ratio

of ERCC counts over cellular mRNA counts was compared between FACS-isolated cells and

microfluidically-isolated cells (Fig 5A). If this ratio is high, cellular mRNAs are in low number,

indicating that either the cell was not captured properly, lysis was incomplete, or the cell was

stressed at the time of isolation (and thus its mRNAs were starting to degrade).

After data quality filtering, among the 10 microfluidically-sorted cells, a total of 7 passed

quality filters; the three “poor quality” cells were most likely damaged or not recovered, as

shown by their high content of ERCC spikes RNA compared to the content of cellular mRNA

Fig 5. scRNA-seq data vizualisation. (A) Plot of the ratio of ERCC mapped in each cell. The orange line represents the cut off value; cells positioned higher

than the cut off are discarded. (B) Boxplot showing the number of detected genes per cell, sorted with conventional FACS or cultured and isolated using the

microfluidic platform. A Wilcoxon rank-test was performed. (C) Boxplot of log(UMIs) number per cell sorted with conventional FACS or cultured and

isolated using the microfluidic platform. A Wilcoxon rank-test was performed. (D) UMAP dimensions reduction and projection of the cells. Only complete

couples of sister cells were kept for the analysis. Chip-cultured cells are coloured and grouped by lineage and FACS sorted cells are grey.

https://doi.org/10.1371/journal.pone.0288655.g005
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(Fig 5A). Among the remaining seven cells, two complete sister cell couples were recovered.

The sister cells isolated using our microfluidic platform displayed the same amount of mean

detected genes per cell and mean UMIs, which reflects the total number of molecules per cells,

as the control FACS-sorted cells (Fig 5B and 5C, respectively). The application of UMAP

dimensionality reduction and projection revealed that chip-cultured and isolated sister cells

did not significantly differ from control FACS-sorted cells, as shown by the fairly uniform

repartition of all cells within the graph (Fig 5D).

Conclusions and discussion

In this study, we have described the development of a multilayer microfluidic device and

experimental workflow for tracking non-adherent cell divisions at the single-cell level. The

microfluidic platform is able to concurrently trap single-cells in eight independently controlled

proliferation chambers, isolate sister cells after division and extract them for downstream anal-

ysis. We have demonstrated that the system is capable of tracking cells over at least two genera-

tions using two different cell models (i.e. a cell line and primary cells). The complete platform

incorporates semi-automated cell loading, long-term cell monitoring and cell extraction.

Characterisation experiments confirmed that both 6C2 (chicken erythroleukemia cell line)

and T2EC (chicken primary erythrocytic progenitors) cells proliferated inside the chip, with a

viability rate higher than 90%. Divided cells were separated and placed inside the 500 nL-vol-

ume extraction chambers, which were compatible with downstream scRNA-seq analysis. Our

general method allows the recovery of selected single-cells and the extraction of genealogical

information of the cell, while providing the same data quality required for subsequent scRNA-

seq analysis, as provided by regular FACS sorting. More generally, the developed system pro-

vides a robust and automated platform for single-cell lineage tracking studies at the single-cell

resolution, and can be used to track non-adherent cells, including cell lines and primary cells.

In the future, we expect that the device will be highly useful in performing perturbation experi-

ments, including induction of differentiation and gene expression modulation using drugs, by

changing culture reagents during the culture process. Moreover, analytical throughput can be

significantly enhanced by increasing the number of parallel proliferation chambers per device,

automation of single-cell trapping and automatic detection of cell division and relocation.

Supporting information

S1 Video. Video of sister cells exiting the chambers area and moving toward the separation

area.
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