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A small-but-smart set of selected

genes yielded a 90% success rate

of active enzymes
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insight into biocatalysis

The obtained dehalogenases

outperform previously discovered

or engineered variants
We present a pipeline integrating sequence and structural bioinformatics with

microfluidic enzymology to discover efficient and robust haloalkane

dehalogenases. Our smart bioinformatic identification of promising candidates in

genomic databases is followed by efficient microfluidic characterization, in terms

of activity, specificity, stability, andmechanistic insights. The obtained biocatalysts

outperform the previously known wild-type and engineered dehalogenases. This

strategy is applicable to other enzyme families, paving the way toward

accelerating the identification of novel biocatalysts for industrial applications.
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THE BIGGER PICTURE

For decades, scientists have asked

themselves how to obtain better

enzymes: should they discover

new enzymes from nature or

improve known enzymes by

protein engineering? The success

of many protein engineering

studies might lead to

underestimating the potential of

natural diversity represented by

genomic databases. We present a

pipeline integrating sequence

and structural bioinformatics with

microfluidic enzymology to

discover efficient and robust

biocatalysts. Bioinformatic

analysis prioritizes promising

candidates, while microfluidic
SUMMARY

Next-generation sequencing doubles genomic databases every 2.5
years. The accumulation of sequence data provides a unique oppor-
tunity to identify interesting biocatalysts directly in the databases
without tedious and time-consuming engineering. Herein, we pre-
sent a pipeline integrating sequence and structural bioinformatics
with microfluidic enzymology for bioprospecting of efficient and
robust haloalkane dehalogenases. The bioinformatic part identified
2,905 putative dehalogenases and prioritized a ‘‘small-but-smart’’
set of 45 genes, yielding 40 active enzymes, 24 of which were bio-
chemically characterized by microfluidic enzymology techniques.
Combining microfluidics with modern global data analysis provided
precious mechanistic insights related to the high catalytic efficiency
of selected enzymes. Overall, we have doubled the dehalogenation
‘‘toolbox’’ characterized over three decades, yielding biocatalysts
that surpass the efficiency of currently available wild-type and engi-
neered enzymes. This pipeline is generally applicable to other
enzyme families and can accelerate the identification of efficient
biocatalysts for industrial use.
enzymology facilitates efficient

characterization of these

enzymes, leading to mechanistic

insights. The obtained enzymes

catalytically outperformed

previously known variants,

independently of whether these

had been newly discovered or

engineered. This study represents

an interesting conceptual view of

current approaches used in

biocatalyst development, which

should explore the great potential

of structural and functional

diversity found in nature.
INTRODUCTION

Nature relies on enzymes, which enable virtually every biosynthetic and biodegrada-

tion process in all life forms. Humanity recognized the power of enzymes and har-

nessed them in a wide range of industrial sectors, such as food, textile, agriculture,

chemical, and pharma industries.1 Despite the successful application of a range of

enzymes, their properties often do not match the application requirements for

high catalytic efficacy. For decades, scientists have asked themselves how to find

better biocatalysts: "Shall we explore the natural sequence space (discover new en-

zymes), or rather the artificial diversity (improving existing enzymes)?"2

Thanks to the genomic revolution, the avalanche of protein sequences filling the

genomic databases at an unprecedented pace represents an outstanding achieve-

ment, but it also brings new challenges to its effective exploration and practical uti-

lization. So far, only a negligible fraction of genes deposited in databases have been

experimentally characterized. Moreover, incorrect automatic annotations are quite

frequent and tend to percolate, leading to error accumulation.3,4 Thus, without

advanced bioinformatics expertise, relying only on database annotations, many ef-

forts dedicated to discovering new biocatalysts do not succeed, even after large
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investments and the application of high-throughput screening campaigns.5 This can

lead to underestimating the potential of natural diversity hidden in sequence

databases.

In parallel, the success of many protein engineering studies arises from applying

modern directed evolution strategies, combined with in silico identification of hot

spots and followed by an experimental screening of smaller ‘‘smart’’ libraries.6 Simi-

larly, applying advanced bioinformatic methods for smart prioritization of a smaller

list of candidates toward a ‘‘focused’’ experimental characterization represents a

promising strategy for identifying suitable biocatalysts from the rich sequence infor-

mation accessible in databases.7 A critical requirement is the availability of bio-

informatic tools, especially for non-expert users, enabling wide and effective explo-

ration of the natural diversity hidden in sequence databases for scientific and

industrial communities.8

Herein, wepresent a pipeline integrating advanced sequence and structural bioinfor-

matics with microfluidic enzymology for bioprospecting of efficient and robust bio-

catalysts. We doubled the number of experimentally characterized members of a

model enzyme family in a single run of this workflow. At the same time, the obtained

enzymes catalytically surpass the previously known variants, whether discovered or

engineered. The experimental pipeline relies heavily on two in-house microfluidic

platforms, Microfluidic Profile Explorer (MicroPEX) and Kinetic Microfluidic Autono-

mous Platform (KinMAP), where the latter is introduced in this study. By subjecting

the multidimensional data from KinMAP to modern global data analysis, unique

mechanistic insights were obtained for the enzymes with the highest overall activity.

A model enzyme family, haloalkane dehalogenases (HLDs; EC 3.8.1.5), was used as

the case study. Three decades of intensive research on HLDs has made them bench-

mark enzymes for studying the structure-function relationships of the>100,000mem-

bers of thea/b-hydrolase fold superfamily9 and the development of novel concepts in

the field of protein engineering.10 Thanks to the long-term, extensive research on

HLDs, we could conceptually compare the variants obtained by the advanced data-

base mining with enzymes previously isolated by classical enzymological ap-

proaches11 and variants systematically constructed over more than 20 years by

various protein engineering strategies. These strategies include optimizing12 and

introducing de novo access tunnels,13 active site remodeling,14,15 engineering

dynamical protein loops,16 targeting mutations that enhance thermostability,17–19

or resurrecting HLDs by ancestral sequence reconstruction.20 We believe the current

study presents an interesting conceptual view of current approaches used in biocat-

alyst development, which should not underestimate the potential of structural and

functional diversity found in nature.
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RESULTS

The bioprospecting of efficient and robust biocatalysts from sequence databases was

performed as follows. First, we applied an automated in silico workflow (Figure 1) to

identify putative family members and select promising candidates. Next, we experi-

mentally characterized the prioritized hits from the in silico screening by employing

small-scale expression, followed by in-depth microfluidic characterization (Figure 2).
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Automated in silico workflow

The in silico bioprospecting workflow is composed of three steps: (1) database

search and sequence processing using a previously developed sequence
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Figure 1. Bioinformatics workflow enabling selection of small-but-smart set of enzymes for

thorough experimental characterization

The sequence bioinformatics pipeline (green) has been previously implemented as the web-based

software tool EnzymeMiner.21 Automated sequence analysis has been complemented by a

structural bioinformatics pipeline (blue), providing additional high-quality annotations for

prioritization and selection of a small-but-smart set of proteins (yellow) for experimental

characterization. The individual steps are illustrated in the middle panel and labeled. The numbers

of hits achieved in every step are highlighted on the right side. The symbols located in the upper

right corner distinguish the steps utilizing database or software tools. Altogether, the workflow was

realized within several days.
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bioinformatics pipeline (available as the web tool EnzymeMiner21), (2) structure pre-

diction and its systematic analysis using various computational tools within a newly

developed structural bioinformatics pipeline, and (3) prioritization of hits from both

sequence and structural bioinformatics pipelines and selection of a ‘‘small-but-

smart’’ set of proteins for experimental characterization (Figure 1).
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Figure 2. Experimental workflow for efficient and thorough characterization of well-expressed

enzymes

The left side captures individual characterization steps with the microfluidic techniques in

parentheses. The key parameters of each characterization necessary for the experimental design of

the following step (key symbol) are at the bottom of each frame. The right side describes the

characteristics of each technique with respect to sample requirements per enzyme in micrograms,

time requirements per run in hours, and the possible number of enzymes measured in parallel. The

timescale for characterization of the 24 discovered dehalogenases (steps 1–3) and six selected

enzymes (step 4) is shown in hours of measurement on the very right.
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Database search

We reran the in silico screening with the same four input sequences as previously22

using the current version of the NCBI nr database and a recently developed tool for

automated database mining.21 The previously used workflow has been expanded by

(1) application of EFI-EST23 and Cytoscape24 for calculation and visualization of the

sequence-similarity network, (2) extraction of the biotic relationships and disease

annotations of the source organisms from the BioProject database,25 and (3) the

quantitative assessment of the quality of all homology models by MolProbity.26

Sequence database searches using four known HLDs as query sequences generated

24,594 hits sharing minimal sequence similarity to at least one of the query

sequences. The putative HLD sequences containing the target HLD domain were

automatically recognized using global pairwise sequence identities and average-

link hierarchical clustering. Artificial protein sequences annotated by the terms
Chem Catalysis 2, 2704–2725, October 20, 2022 2707



Figure 3. Sequence-similarity network for HLDs categorized by their expression, solubility, and activity

The putative HLDs are clustered into four subfamilies: HLD-I, HLD-II, HLD-III, and HLD-IV. The sequences were first clustered at 50% identity to reduce

the number of nodes and edges. The sequences with higher identity are consolidated into a single node. Edge lengths indicate sequence similarity

between representative sequences of the connected nodes. Sequence-similarity networks of putative HLDs were calculated and visualized by EFI-EST23

and Cytoscape v3.6.1.24 The results from expression, solubility, and activity analyses are shown in the doughnut graphs (upper left). Enzymes were

assigned to five distinct groups based on their expressibility, solubility, and activity, indicated by different colors in doughnut graphs and the sequence-

similarity network. A set of 24 highly soluble and active enzymes (green) was subjected to systematic biochemical characterization. Four weakly

expressed genes (black) and 12 over-expressed genes providing proteins with low solubility (yellow) tested positive with at least one of the five

halogenated substrates in the whole-cell activity screening assay (Table S8). Four over-expressed genes providing insoluble proteins (blue) and one

weakly expressed gene (red) led to proteins that did not exhibit any activity in our tests.
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‘‘artificial,’’ ‘‘synthetic construct,’’ ‘‘vector,’’ ‘‘vaccinia virus,’’ ‘‘plasmid,’’ ‘‘HaloTag,’’

or ‘‘replicon,’’ were excluded.

Clustering, alignment, and filtering

The remaining 2,905 protein sequences were clustered into four subfamilies: HLD-I

(915), HLD-II (1058), HLD-III (910), and HLD-IV (22), based on the sequence identity

and the composition of their catalytic pentads.27 Despite having identical catalytic

pentads, HLD-III and HLD-IV were clustered separately based on differences in their

sequences. Incomplete and degenerated sequences were filtered out by construct-

ing multiple sequence alignments of individual subfamilies. Sequence-similarity net-

works were constructed to visualize relationships among putative HLD sequences

(Figure 3). The most apparent defining features were clustered in the distinct HLD

subfamilies, implying that the sequence-similarity networks might provide a frame-

work for identifying HLDs of similar structural and functional properties and

surveying regions of sequence space with high diversity. To diversify HLD sequence

space, redundant sequences with R90% sequence identity to the set of 22 charac-

terized dehalogenase sequences (Table S1) were filtered out.
2708 Chem Catalysis 2, 2704–2725, October 20, 2022
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Structure prediction, active site analysis, transport path analysis, and substrate
binding

The remaining 2,578 putative HLD sequences were subjected to an annotation step

consisting of information retrieval from biological databases and structure predictions.

The annotation step revealed that the identified HLDs span a broad range of sequence

andhost diversity, includingbacterial, archaeal, and eukaryotic proteins. Theoverall ac-

curacy of annotation, judged by assignment to the HLD family, was 63% but varied

significantly among each of the HLD subfamilies. Most sequences in HLD-I (73%) and

HLD-II (86%) subfamilies were annotated correctly. In contrast, the portion of correctly

annotated sequences was reduced to 31% for HLD-III and 56% for HLD-IV (Table S2).

Most members from the putative HLD-IV subfamily were annotated as HLDs, despite

their low sequence identity to the experimentally characterizedHLDsor other subfamily

members. The annotation revealed four putative dehalogenases frompsychrophilic or-

ganisms, 35 novel proteins frommoderate halophilic organisms, and four proteins with

known tertiary structures. Reliable homology models could be constructed for most

subfamily HLD-I and HLD-II members but only a limited number of HLD-III members

and none of the HLD-IV members. The predicted volumes of catalytic pockets ranged

from 50 Å3 to 3,950 Å3 (Figure S1). Putative transport pathways were analyzed by pre-

dicting access tunnels connecting a buried active site with a protein surface. Molecular

docking simulations were employed to probe potential binding modes of representa-

tive halogenated compounds (Table S3).

Prioritization and selection of targets

Rational selection of hits for experimental characterization was carried out to maxi-

mize the functional diversity of the studied protein family. The dataset of 2,578 pu-

tative HLDs was summarized in 17 datasheets focused on different annotations

or computed properties. Hits represented by homology models with MolProbity

scores >3.0 were removed from the datasheets summarizing the annotations based

on the predicted homology structure (i.e., active site volume and tunnel properties).

A few sequences were selected from each datasheet tomake the selection as diverse

as possible (Data S2; Table S4). The sequences with a higher predicted solubility and

higher-quality homology models were prioritized. Simultaneously, we tried to bal-

ance the number of sequences from each haloalkane dehalogenase subfamily

(HLD-I, HLD-II, and HLD-III). The only exception was the HLD-IV subfamily, which

contains multi-domain protein sequences derived from eukaryotic organisms. We

avoided sequences with additional Pfam domains, as they were previously poorly

expressible in bacterial host systems.22 A small-but-smart set of 45 diverse se-

quences was selected as experimental characterization targets (Tables S5 and S6).
Small-scale protein expression

This representative set of 45 HLD genes was subjected to a small-scale expression in

Escherichia coli in 96-deep-well square plates and screening of HLD activity in whole

cells (Figure 3) using the halide oxidation (HOX) assay.28 Overall, 40 out of 45 genes

(89%) couldbeover-expressed. Although30out of 45genes (67%) yielded solublepro-

teins (Figure S3A), only 24 of them (53%) showed sufficient expression and solubility for

downstream biochemical characterization (Figure S4). Comparison of the in silico pre-

diction of soluble expression with experimental data showed a poor correlation (Pear-

son’s correlation coefficient 0.263) and only 66.7% prediction accuracy. Specifically,

the in silico solubility predictions resulted in 22 true-positives, eight true-negatives,

four false-negatives, and 11 false-positives (Table S7). A further thorough analysis of

solubility profiles revealed that seven out of 11 (64%) HLD-I and 17 out of 24 (71%)

HLD-II subfamilies were expressed in a soluble form, while only two out of 10 HLD-III

(20%) proteins were soluble. Solubility problems are thus related mainly to the
Chem Catalysis 2, 2704–2725, October 20, 2022 2709



Table 1. Summary of biochemical properties of HLDs

Enzyme
Yield
(mg. L�1)

Specific activitya

(nmol.s�1.mg�1) Tonset (�C) Tm
app (�C) Tmax (�C)

E value

2-Bromopentane Ethyl 2-bromopropionate

DstA 70 2.5 G 0.1 30.9 G 0.2 43.4 G 0.1 30 1.27 G 0.01 2.59 G 0.04

DfxA 10 2.9 G 0.2 30.5 G 0.6 40.6 G 0.5 35 N/A N/A

DlaA 40 3.9 G 0.1 35.6 G 1.2 48.1 G 0.6 30 N/A N/A

DaxA 120 1.1 G 0.2 42.9 G 0.2 48.7 G 0.1 35 16.4 G 0.3 N/A

DsmA 120 86.1 G 0.4 27.6 G 0.1 35.7 G 0.1 25 1.60 G 0.01 81 G 1

DmmarA 20 5.9 G 0.1 32.3 G 0.1 42.1 G 0.2 30 6.33 G 0.04 1.22 G 0.01

DathA 60 5.7 G 0.2 38.1 G 0.6 46.4 G 0.1 35 27.3 G 0.4 45 G 1

DmaA 30 211.1 G 4.7 32.5 G 0.1 40.2 G 0.3 35 2.13 G 0.01 49.8 G 0.4

DspoA 80 860.7 G 16.8 50.8 G 0.2 58.7 G 0.6 50 9.755 G 0.083 128 G 1

DexA 120 572.7 G 10.1 43.4 G 1.1 47.5 G 0.4 45 5.46 G 0.04 152 G 2

DppsA 100 29.0 G 0.1 24.7 G 0.2 38.1 G 0.2 35 3.32 G 0.03 84 G 1

DeaA 70 405.0 G 7.6 45.3 G 0.1 52.2 G 0.2 45 >200 113 G 2

DmgaA 100 6.1 G 0.1 38.2 G 1.6 44.7 G 0.9 40 N/A N/A

DprxA 150 630.1 G 14.3 44.3 G 1.7 51.8 G 0.3 45 3.23 G 0.02 >200

DrgA 20 1.8 G 0.2 36.8 G 0.4 44.2 G 0.4 35 N/A N/A

DmbaA 10 132.5 G 1.7 36.8 G 0.3 46.6 G 0.2 45 5.54 G 0.04 22.2 G 0.2

DthA 90 31.3 G 0.7 40.4 G 0.3 49.9 G 0.9 35 155.9 G 0.7 >200

DphxA 30 595.7 G 7.0 47.0 G 0.6 55.4 G 0.2 35 1.82 G 0.01 26.0 G 0.2

DthB 20 121.8 G 4.4 44.8 G 0.6 53.4 G 0.4 45 2.98 G 0.02 15.9 G 0.1

DnbA 90 6.5 G 0.2 37.3 G 0.1 47.8 G 0.4 40 14.1 G 0.3 N/A

DhxA 120 610.8 G 0.9 44.1 G 0.4 53.1 G 0.3 35 1.574 G 0.011 >200

DspxA 30 81.9 G 0.1 44.2 G 0.3 53.3 G 0.2 35 42.1 G 0.5 156 G 3

DchA 20 143.3 G 5.2 47.0 G 0.1 55.2 G 0.8 40 2.52 G 0.02 27.7 G 0.3

Dcta 10 5.0 G 0.1 31.6 G 0.1 39.8 G 0.6 35 NA 187 G 2

Tonset, unfolding onset temperature by capillary DSF; Tm
app, apparent melting temperature by capillary DSF; Tmax, maximum HLD activity; NA, no activity.

aSpecific activity toward 1,3-dibromopropane was determined in 1mMHEPES buffer at pH 8.2 and at a temperature close to the optimal temperature (Table S10).
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previously reported difficulties with producing HLD-III proteins.29,30 We then probed

the expressibility of all 45 HLD genes using a reconstituted cell-free transcription and

translation system (PURExpress, NEB). Overall, 41 of 45 genes (91%) were over-ex-

pressed, and 29 proteins (64%) were obtained in soluble form (Figure S3B). Application

of the cell-free PURExpress system did not result in the desired improvement of solubi-

lity for the difficult-to-produce HLDs, suggesting that in vivo toxicity has little effect on

the production of these proteins. In addition, the number of active variants detectable

in whole cells (40 out of 45) is higher than that of finally purified proteins (24 out of 45),

indicating problems with protein stability/solubility related to the purification process

(Figure 3 and Table S8). The activity analysis in whole cells showed that the success rate

of target activity prediction is at least 90%.

Microfluidic enzymology

The experimental pipeline (Figure 2) comprised commercial microfluidic instruments

and two custom-made microfluidic platforms. Combining these modern technolo-

gies led to an efficient yet in-depth biochemical characterization of the 24 selected

HLDs (Table 1). The results of individual characterization steps provided key param-

eters for the experimental design of the subsequent step within the workflow (Fig-

ure 2). First, thermostability measurements helped estimate the temperature ranges

for each temperature profile. Second, temperature profiles provided the optimum

temperature for the subsequent substrate specificity characterization. Finally, based

on the overall catalytic activity from substrate specificity measurements, the best

variants were characterized in terms of steady-state kinetics and reaction thermody-

namics, providing further mechanistic insights.
2710 Chem Catalysis 2, 2704–2725, October 20, 2022
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Thermostability

After protein purification, the thermostability of the novel HLDs was analyzed in a

high-throughput manner by monitoring changes in extrinsic (SYPRO orange dye)

and intrinsic (tryptophan) fluorescence during thermal denaturation experiments,

using the thermal shift assay (TSA) and microscale differential scanning fluorimetry

(DSF), respectively. The thermostability measurements provided the temperature

at which protein denaturation starts (onset temperature, Tonset) and the midpoint

of the denaturation curve (apparent melting temperature, Tm
app), where the

latter was used for comparison of individual thermostability methods. The results

of the microscale methods showed an excellent agreement (R2 of 0.79 and 0.93

for TSA and capillary DSF, respectively) with conventional circular dichroism (CD)

spectroscopy (Table S9; Figure S5). The apparent melting temperature (Tm
app)

values (Table S9) primarily reflect the mesophilic origins of the novel HLDs

(40�C–60�C). Exceptions are DsmA and DppsA, which exhibited Tm
app values at

35.7�C and 38.1�C, respectively, correlating with their psychrophilic origin. It is

worth noting that the most stable protein identified was DspoA, with a Tm
app value

of 60�C.

Temperature profiling

Temperature profiling was performed using the first custom-made MicroPEX, utiliz-

ing a pH-based fluorescence assay in droplets, as described previously.31 The new

dehalogenases obtained in this study showed activity over a wide temperature

range (Figures 4B and S6; Table S10). DmaA was unique, as it retained more than

65% dehalogenase activity at 5�C. This dehalogenase performed equally well at

this low temperature compared with benchmark dehalogenases at their tempera-

ture optima (30�C–45�C).32 A positive correlation was observed between the tem-

perature of the highest observed activity (Tmax) and Tonset obtained from thermal

denaturation experiments (Figure S7).

Substrate specificity profiling

Substrate specificity profiling toward 27 representative substrates was conducted

using the same analytical assay as temperature profiling on MicroPEX (Table S11).

This structurally diverse set of substrates reflects the application of HLDs, including

environmentally important compounds (Table S12). The raw data of specific activ-

ities (Table S13) showed that HLDs exhibited better activities with the following or-

der of preference: brominated > iodinated[ chlorinated. Analysis of the substrate

preferences showed that the optimal substrates of the newly discovered HLDs have

linear alkyl chains of two to four carbon atoms (Figure S8A) and that the majority of

the HLDs can convert this type of substrate with the highest efficiency (Figure S8B).

Based on these observations, we suggest a set of ‘‘universal’’ substrates:

1-bromobutane (#18), 1-iodopropane (#28), 1-iodobutane (#29), 1,2-dibromo-

ethane (#47), and 1,3-dibromopropane (#48). The substrate specificity profiling

also identified a set of ‘‘recalcitrant’’ substrates: 1,2-dichloroethane (#37), 1,2-di-

chloropropane (#67), 1,2,3-trichloropropane (#80), the analog of the warfare-agent

yperite bis(2-chloroethyl)ether (#111), and chlorocyclohexane (#115), which is in

good agreement with previous studies.32,33 It is worth noting that two-thirds of

the newly discovered enzymes possess broad substrate specificity and convert

>80% of the substrates tested (Table S14). Interestingly, two new enzymes, DstA

and DthA, showed a previously undescribed narrow specificity. Specifically, DstA

effectively converted one specific substrate, 1-bromohexane (#20), with 5-fold

higher activity than any other substrate. Similarly, DthA exhibited considerable de-

bromination activity for only two substrates, 1,2-dibromoethane (#47) and 1-bromo-

2-chloroethane (#137).
Chem Catalysis 2, 2704–2725, October 20, 2022 2711



Figure 4. Temperature profiles and substrate specificity by droplet-based microfluidics

(A) Photograph and scheme of the droplet-based microfluidic profile explorer (MicroPEX) to determine temperature profiles and substrate specificity.

Depicted are the main parts of the device, including the droplet generator (1), incubation chamber for substrate delivery under temperature control (2),

detection cell (3), microfluidic pump (4), fluorescence excitation laser (5), and a photodetector (6).

(B) Temperature profiles. The heatmap represents the relative activity of individual enzymes. Each data point represents an average of 5–10 repetitions.

(C) Multivariate analysis of substrate specificity. A double-dendrogram heatmap of log-transformed data depicts the similarity of enzyme activity

(vertical axis) and conversion of halogenated substrates (horizontal axis). Major groups of enzymes and substrates are highlighted with the same color.

(D) Multivariate analysis of catalytic activity. The score plot t1 compares the enzymes in terms of their overall activity with 27 substrates and explains

85.1% of the data variance. The light red frame highlights new enzymes with an outstanding catalytic activity, which were characterized by steady-state

kinetics and reaction thermodynamics (Figure 5). The previously characterized HLDs are colored gray in (C) and (D). The heat maps (B and C) and bars (D)

are color coded by enzymatic activity from low activity (blue) to medium activity (yellow) and high activity (red).

ll
Article
Principal-component analysis

First, we conductedprincipal-component analysis (PCA) using the untransformed spec-

ificity data of eight benchmarks31 and 24 newly identified HLDs. This analysis aimed to

compare the enzymes according to their score with the first principal component (t1),

thus quantifying their global activity against the set of substrate activities (Figure 4D).
2712 Chem Catalysis 2, 2704–2725, October 20, 2022
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Surprisingly, 11 of the 24 newly characterized HLDs showed significantly higher global

activity than the known benchmark HLDs. This result was validated using conventional

activity measurements with an overall well-converted substrate, 1,3-dibromopropane

(Figure S9). Six out of these 11 highly active enzymes exhibited outstanding overall ac-

tivity, and, therefore, they were chosen to characterize their steady-state kinetics and

reaction thermodynamics using KinMAP (Figure 4D). The second PCA was performed

with log-transformed and weighted activity data, allowing a direct comparison of the

specific profiles of individual enzymesunbiasedby thedifferent levels of their global ac-

tivity (FigureS10). ThebenchmarkHLDs (DbjA, LinB,DmbA,DhlA, andDhaA)were clus-

tered in agreementwith the previously reported substrate specificity groups of HLDs.33

In this analysis, two newly discovered variants, DstA and DthA, were separated from

other enzymes due to their unusually narrow substrate specificity.

Hierarchical clustering

The log-transformed specificity data were subjected to hierarchical clustering to iden-

tify similarity in preferred substrates or selectivity of enzymes; both were plotted as a

double-dendrogram heatmap (Figure 4C). Our analysis clustered the substrates into

threemain groups. The first group (yellow in Figure 4C) comprises frequently converted

substrates, mostly iodinated compounds with a chain length of three or four carbon

atoms. The secondgroup (green in Figure 4C) includesmoderately and poorly convert-

ible (mainly chlorinated) substrates. The third group (brown in Figure 4C) contains only

three structurally similar substrates preferred over other tested substrates by most en-

zymes. Clustering of the specificity profiles divided analyzed HLD variants into twoma-

jor groups. The first group (purple in Figure 4C) consists of highly active and broad-

specificity enzymes, including the benchmark enzymes DhlA, DhaA, DbjA, LinB, and

DmbA, capable of converting the majority of the substrates. The second group of en-

zymes (orange in Figure 4C) is almost entirely composed of newly identified enzymes

(except for DatA), which preferentially convert the more frequently converted sub-

strates (the first and the third group of substrates: yellow and brown in Figure 4C,

respectively) over the second group of substrates (green in Figure 4C). The enzymes

forming the second group are barely active with 1,2-dibromopropane (#72),

4-bromobutyronitrile (#141), and 1,2,3-tribromopropane (#154), unlike enzymes from

thefirst group. The thirdgroup (teal in Figure4C) contains four enzymespossessingnar-

row substrate specificity profiles; e.g., DrbA toward 1,2-dibromo-3-chloropropane

(#155) or DsmA toward 3-chloro-2-methylpropene (#209).

Steady-state kinetics and reaction thermodynamics

Inspired by technology for kinetic analysis of nanoparticle synthesis,34 we developed

a microfluidic device for kinetic and thermodynamic analysis of enzyme reactions

called the KinMAP (Figure 5A; see details in supplemental experimental procedures

1.5, Table S16, and Figures S12–S16). KinMAP operates autonomously thanks to the

software MAPit, integrating control over all hardware units and providing fully auto-

mated calibration, data acquisition, and signal processing for a wide range of con-

ditions with minimal user involvement (supplemental experimental procedures

1.5; Figures S15 and S16).

KinMAP was used to determine steady-state kinetics and reaction thermodynamics

parameters for selected highly active enzymes (DspoA, DexA, DeaA, DprxA, DphxA,

and DhxA) (Figure 4D). Multidimensional data, including concentration and temper-

ature dependence of the reaction, were collected by monitoring the conversion

progress at six different substrate concentrations (0–1 mM 1,3-dibromopropane),

and each of them at six different temperatures from 25�C to 50�C in 5�C increments

(Figure 5B). The global numerical fitting of such a complex dataset provided
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Figure 5. Mechanistic analysis by droplet-based microfluidics and global numerical integration

(A) The droplet-based Kinetic Microfluidic Autonomous Platform (KinMAP) enables kinetic and thermodynamic measurements. A photograph (top)

illustrates the reaction droplets traveling through the incubation zone with temperature control. The schematic of the device (bottom) depicts syringe

pumps for aqueous solutions of reactants (1), oil phase (2), droplet generator (3), reaction zone with temperature control (4), motorized stage (5),

excitation light source (6), dichroic mirror (7), and detection of emitted light (8).

(B) Example of the kinetic and thermodynamic data collected for DspoA by monitoring the enzymatic conversion under different substrate

concentrations (0–1 mM 1,3-dibromopropane) at different temperatures (25�C–50�C) in 1 mM HEPES buffer (pH 8.2). Each data point represents an

average of 20 repetitions; the solid lines represent the best global fit. The data for all selected enzymes, parameter estimates, and statistics are

summarized in Figure S11 and Table S15.

(C) The kinetic parameters (top figures), turnover number (kcat), and specificity constant (kcat/Km) were obtained by global fitting complex kinetic and

thermodynamic data (values at reference temperature 310.15 K, 37�C). The error bars represent standard errors. Gray columns represent previously

reported values for the reaction of wild-type DmxA and its engineered single-point mutant DmxA Q/N, both with 1,3-dibromopropane (100 mM glycine

buffer, pH 8.6, 37�C).35 The contributions of activation enthalpy (DHz) and entropy (�T.DSz) to the Gibbs free energy of activation (DGz) derived from the

temperature dependence of catalytic turnover (kcat) and specificity constant (kcat/Km) for the reference temperature 310.15 K (bottom figures). The green

arrows show favorable entropy values lowering the activation barrier.
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estimates for the kinetic constants, namely specificity constant (kcat/Km), turnover

number (kcat), the equilibrium constant for enzyme-product complex dissociation

(KP), and the corresponding thermodynamic parameters (Figures 5C and S11;

Table S15). Following new standards for collecting and fitting steady-state kinetic
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Figure 6. Functional characteristics of the HLD family members

(A) Five strategies were used to obtain catalytically efficient HLDs: functional cloning (purple), protein engineering (blue), database mining (green),

basic bioinformatics and enzymology (orange), and advanced bioinformatics and mEnzymology (red, present study).

(B) Box chart comparing turnover numbers for enzyme variants obtained by respective strategies with data points to the right of the boxes. The box

shows median (line), mean (small square), quartiles, minima, and maxima. The 25% best data points are highlighted in colors, while the remaining data

points are gray. The values of the 25% best turnover numbers obtained by respective strategies were tested for similarity with turnover numbers

obtained in this study using Welch’s unequal variances t test (significant p values indicated in bold). Selected best variants are labeled.

(C) The dependence of catalytic efficiency on turnover numbers provides the complex catalytic evaluation of enzymes.

(D) The dependence of turnover numbers on the melting temperature of each variant provides activity-stability relationships. The data were collected

from published research. The kinetic data gathered here were measured with the best substrates for HLDs, 1,2-dibromoethane and 1,3-

dibromopropane at 37�C or lower temperatures. Plot (D) does not contain all the data points from (B) and (C) since thermostability data are unavailable

for some variants.
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data,36 we estimated kcat/Km directly instead of Km. Unlike Km, which has no mech-

anistic meaning, kcat/Km can be interpreted as the apparent second-order rate con-

stant for substrate binding and quantifies enzyme specificity, efficiency, and profi-

ciency. Moreover, there are smaller errors in the fitting process to derive kcat/Km

directly rather than calculating the ratio of kcat and Km derived independently (see

details in supplemental experimental procedures 1.6).

All six selected enzymes showed one of the highest turnover numbers (13–80 s�1) ever

observed within the HLD family compared with previously isolated wild-type and engi-

neered variants (Figure 6). The highest previously reported turnover number for a deha-

logenase, kcat of 57 s�1, was determined for LinB86 in converting 1,2-dibromoethane

(#47) (Figure S8). This four-point mutant with an introduced de novo access tunnel

wasobtainedby several cyclesof computermodelingand rational engineering.13 Three

new biocatalysts identified in this study (DprxA, DhxA, and DexA) exhibited higher kcat
(80, 74, and 64 s�1, respectively) than LinB86 (Figure 5C, upper left), whichmakes them

the fastest HLDs ever reported.
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Despite the high kcat of LinB86, its specificity constant was relatively low

(kcat/Km = 24 mM�1 s�1). On the contrary, wild-type LinB in the reaction with 1,3-

dibromopropane (Figure S8) exhibited a high specificity constant (kcat/

Km = 165 mM�1 s�1) but a lower kcat = 6.6 s�1.37 A rare example of an HLD exhibiting

high values of both kcat and kcat/Km was the engineered variant DmxA Q/N.35 This

single-point mutant, engineered from DmxA originating from the psychrophilic bac-

teriumMarinobacter sp. ELB17, shows kcat of 31 s�1 and kcat/Km = 244mM�1 s�1 with

1,3-dibromopropane. Such a rare combination of high kcat and kcat/Km values was

observed for three newly identified enzymes (Figure 5C), namely DprxA, DhxA,

and DphxA. Remarkably, DphxA with kcat of 54 s�1 and kcat/Km = 290 mM�1 s�1

shows the best combination of turnover number and catalytic efficiency ever re-

ported (Figure 6C).

The temperature dependences analyzed for the catalytic rate (kcat) indicated that the

free energy of activation is predominantly determined by a positive enthalpy, or a

combination of both entropy and enthalpy, in the case of DprxA and DhxA. Interest-

ingly, DspoA, DexA, and DphxA showed a favorable entropic contribution in

lowering the activation energy of the catalytic turnover (Figure 5C). The temperature

dependences of kcat/Km indicated that the efficiency of substrate binding is similarly

influenced predominantly by enthalpy (DeaA, DprxA, and DhxA) or a combination of

positive enthalpy and unfavorable loss of entropy (DspoA and DhxA). The other two

interesting cases are DexA, with its specificity constant dominated by unfavorable

entropy, and DeaA, with a favorable positive entropy, compensating activation

enthalpy and reducing the overall free energy of activation (Figure 5C). The mecha-

nistic information derived from the differences in the thermodynamic profiles

provides an excellent starting point for rational design38 and further analysis using

machine learning.39
Additional biochemical characteristics

Enantioselectivity

Enantioselectivity was assessed by determining the kinetic resolution of rac-2-bro-

mopentane and rac-ethyl 2-bromopropionate, representing two distinct groups of

chiral substrates (b-brominated alkanes and esters, respectively). Individual HLDs

showed variable enantioselectivity in the reaction with the racemic substrate

2-bromopentane. More specifically, high enantioselectivity was identified

for DeaA and DthA, exhibiting E values of >200 and 156, respectively (Figure S17).

Most of the novel HLDs preferred the (R)- over the (S)-enantiomer of

2-bromopentane. Interestingly, the enzymes DmmarA, DspoA, DphxA, and DhxA

showed the opposite enantiopreference. To date, only two HLD family enzymes

(DsvA and eHLD-B) have been reported to possess such unique enantioprefer-

ence.29,40 High enantioselectivity (E value > 200) toward the second representative

substrate, ethyl 2-bromopropionate, was observed in the case of DprxA, DthA, and

DhxA (Figure S18).

Secondary and quaternary structure

We also analyzed the secondary and quaternary structure using far-UV-CD spectros-

copy and size-exclusion chromatography. All HLDs exhibited CD spectra with one

positive peak at 195 nm and two negative minima at 208 and 222 nm, characteristic

of proteins with an a/b-hydrolase fold (Figure S19).41 Newly identified HLDs

were mostly monomeric, similar to the previously characterized HLD members

(Table S17). Exceptions were DmmarA, which exists as a dimer, and DprxA,

which exists as a mixture of monomer, dimer, and higher oligomeric states (Fig-

ure S20). Interestingly, native PAGE revealed that DstA was sensitive to the
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oxidation/reduction potential of the environment and formed dimers only under

oxidative conditions (Figure S21).
DISCUSSION

The biotechnology field employing enzymes as catalysts represents a billion-dollar

industry, putting constant pressure on speeding up the identification and character-

ization of novel biocatalysts.42 The avalanche of newly available sequences from

next-generation sequencing represents an enormous potential but, at the same

time, a significant challenge for the practical aspects of efficient search and

throughput for experimental functional characterization. The application of genome

mining can provide a potential solution to managing a large quantity of complex

sequence data effectively.43 Currently, it is not feasible to characterize all sequences

deposited in sequence databases. Instead, in silico screening and prioritizing a nar-

rower selection of targeted sequences based on advanced bioinformatic analyses,

followed by microfluidic high-throughput characterization, appears to be an attrac-

tive approach.

We have used such a strategy to identify novel variants of the haloalkane dehaloge-

nases, a model enzyme family that has been thoroughly investigated for over

30 years. Our results show that only 63% of the identified putative HLDs were labeled

correctly as dehalogenase enzymes in genomic databases. While misannotations

were rare, many proteins annotated as ‘‘a/b-hydrolase’’ or ‘‘hypothetical protein’’

would have beenmissed by a simple text-based search. Proteins from the a/b-hydro-

lase fold superfamily are well known for their catalytic promiscuity and tendency to

catalyze diverse reactions using the same catalytic machinery.44,45 Substrates are

currently unknown for 35% of enzymes annotated as a/b-hydrolases, and thus their

functions remain unclear.46 The current mining approach identified more than 2,578

putative HLDs. The number of hits increased nearly five times compared with the

previous in silico screening.22 The current screening approach missed only 97

sequences out of the original set and identified 2,145 new sequences.

The sequence mining analysis presented in this study is available as a user-friendly

web tool, EnzymeMiner, making at least part of our in silico pipeline widely acces-

sible to the scientific and industrial communities.21 Although other computational

tools help automatically analyze, filter, and visualize large sets of identified

hits,23,24 EnzymeMiner remains, to the best of our knowledge, the only available

web tool for automated selection of promising candidates from the genomic

databases. The versatility of EnzymeMiner has recently been demonstrated in the

discovery of novel fluorinases.47 Pardo et al. used EnzymeMiner to select 10 novel

fluorinases, with 70% and 80% success rates in active and soluble enzymes, respec-

tively. The future version of EnzymeMiner will incorporate the prediction of tertiary

structures using AlphaFold2,48 the analysis of cavities and access tunnels, and the

modeling of enzyme-substrate complexes. The structural bioinformatics part of

this study, including homology modeling followed by molecular docking of haloge-

nated substrates, has been proved to be a powerful approach to identifying enzymes

with high catalytic activities: 11 of 24 characterized HLDs showed higher activity

levels than those reported previously (Figure 4D).33 Particularly, molecular docking

of halogenated substrates turned out to be a promising selection criterion (Tables S3

and S5). All five enzymes (DeaA, DhxA, DphxA, DprxA, and DspxA) showing overall

high dehalogenase activity were selected based on the positive docking of the

warfare agent yperite49 (Figure 4D; Table S3). Applying selection criteria based on

analysis of tunnels by CAVER50 also yielded interesting enzymes (Table S5); for
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example, the large tunnel throughputs of DexA and DmaA. DexA exhibited one of

the largest overall activities (Figure 4D), while the DmaA showed uniquely high ac-

tivity at 5�C (Figure 4B).

The major limitation of in silico analysis is the prediction of protein solubility. Despite

applying the recent solubility prediction tool SoluProt,51 our comprehensive expression

analysis of the whole set of 45 selected putative HLDs revealed a 67% success rate in

terms of soluble proteins, which is a slight improvement in comparison with the previ-

ously achieved 60%.22 The decrease in solubility success rate (33%) is mainly caused

(18%) by thepreviously reported difficult production of HLD-III subfamilymembers.29,30

Protein production in E. coli can be improved by optimizing genetic constructs or

expression conditions. However, the related combinatorial variation or a switch to other

expression hosts such as yeasts or Bacillus species is impractical for such a large set of

proteins. Therefore,producing solubleproteins remains a hit-or-miss affair andcurrently

represents the most significant bottleneck toward the functional characterization of

novel proteins. Improving the in silico solubility prediction is paramount for the

increased success rate of protein characterization pipelines.10,39 Nevertheless, 90% of

the selected candidates were active dehalogenases (Figure 3), some of them limited

to working in whole cells due to sub-optimal in vitro solubility.

An essential component of our experimental workflow is the application of time- and

biological-material-efficientmicrofluidicmethods. First, theMicroPEXwas used to char-

acterize HLD variants regarding temperature profiles and substrate specificity.31

Although state-of-the-art microfluidic systems can characterize >1,000 enzymes in a

run,52 they are limited to water-soluble substrates since the hydrophobic substrates

tend to leak to the oil phase.53 MicroPEX overcomes this limitation by microdialysis

and oil-water partitioning31 and thus enables determination of activities also toward hy-

drophobic substrates, suchas haloalkanes. These substrates areparticularly challenging

due to their high volatility and toxicity; therefore, they are unsuitable formicrotiter plate

measurements. So, compared with conventional methods for HLD activity characteriza-

tion, MicroPEX provides up to 1,000-fold lower protein consumption and 100-fold

higher throughput.31 MicroPEX can be adapted to characterize other enzyme families,

as described in a previous study.2 Moreover, absorbance detection can further extend

the scope of possible enzyme assays, as demonstrated previously.54,55

Second, the KinMAP enables the measurement of temperature-dependent steady-

state kinetics and extraction of the energetic and entropic contributions. This com-

bination of kinetic and thermodynamic analysis was applied to characterize six HLD

variants superior to currently available enzymes. These experiments revealed ther-

modynamic parameters driving their catalytic activity. Such valuable mechanistic in-

formation is rarely collected for multiple catalysts during protein discovery cam-

paigns due to the time-consuming experiments, requirements of large amounts of

purified proteins, and complex data analysis. Enzymes possessing a differential

mix of enthalpy and entropy contributions to the catalytic activity provide unique

starting points for laboratory evolution, targeting active sites,14,15 access tunnels,12

or dynamical protein loops.16 Accordingly, developing an automated droplet-based

microfluidic device will open up opportunities for optimal data collection by employ-

ing feedback loops and machine learning algorithms.39 We are currently working on

expanding the range of KinMAP automation to include adaptive dynamic ranges of

substrate and enzyme concentrations during the scan to increase the precision of the

kinetic parameter estimations. Similar to MicroPEX, KinMAP can be adapted to char-

acterize other enzyme families, given that a fluorescence-based assay can be

employed.
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Overall, this study doubled the ‘‘toolbox’’ of HLD biocatalysts available for various

biotechnological applications by combining advanced bioinformatics with microflui-

dics. Several discovered enzymes exhibited the highest turnover numbers and catalytic

efficiencies ever reported for HLDs.Moreover, unique substrate specificity and unusual

enantioselectivity combinedwith awide rangeof operational temperaturesmake these

enzymes industrially relevant. We believe that further development of bioinformatic al-

gorithms andmicrofluidic enzymology technologieswill facilitate databasemining for a

variety of novel enzymes. Such advances will provide a deeper understanding of

sequence-function relationships and contribute to developing a new generation of

tools in protein engineering and data-driven prediction of enzyme function.56

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will be ful-

filled by the lead contact, Zbynek Prokop (zbynek@chemi.muni.cz).

Materials availability

This study did not generate new unique reagents.

Data and code availability

Dataset with summarized bioinformatic results for the selected enzymes is provided

as Data S2, summarized bioinformatic results. Other datasets supporting the current

study have not been deposited in a public repository but are available from the cor-

responding author on request.

In silico bioprospecting

Theautomated in silicobioprospectingwasbasedonaprotocol describedpreviously.22

Briefly, representative HLD sequences, including three experimentally characterized

HLDs (LinB [NCBI: BAA03443], DhlA [Uniprot: P22643], and DrbA [NCBI: NP_869327])

and a putative HLD from Aspergillus niger (NCBI: EHA28085, residues 90–432) were

used as queries for two iterations of PSI-BLAST57 v2.6.0 searches against the NCBI nr

database (version 2017/02) with E-value threshold of 10�20. A multiple sequence align-

ment of all putative full-length HLD sequences was constructed by Clustal Omega

v1.2.0.58 Sequence-similarity networks of putative HLDs were calculated and visualized

by EFI-EST23 and Cytoscape v3.6.1,24 respectively, and further subjected to the EFI-

GNT59 analysis to obtain genome neighborhood diagrams. Information about the

source organisms of all putative HLDs was collected from the NCBI Taxonomy and

BioProject databases (version 2017/02).25 The homology modeling was performed us-

ing MODELLER v9.18.60 The quality of the generated homology models was assessed

byMolProbity v4.3.1.26Pockets ineachhomologymodelwerecalculatedandmeasured

using the CASTp program61 with a probe radius of 1.4 Å. The CAVER v3.02 program50

was then used to calculate tunnels in the ensemble of all homology models. The prob-

ability of soluble expression inE. coliof eachproteinwaspredictedbasedon the revised

Wilkinson-Harrison solubility model.62 Themolecular docking simulations with selected

halogenated substrates were conducted using AutoDock Vina63 with default settings.

Gene synthesis and DNA manipulation

Codon-optimized genes encoding 45 selected HLDs were designed and commer-

cially synthesized (BaseClear, the Netherlands). The synthetic genes were subcloned

individually into the expression vector pET-24a(+) between the NdeI and XhoI re-

striction sites. For plasmid propagation, competent E. coli DH5a cells were trans-

formed with individual constructs using a heat-shock method. The correct insertions
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of target HLD genes into recombinant plasmids were verified by restriction analysis

of the re-isolated plasmids (Figure S2) and DNA sequencing.

Small-scale protein expression and purification

E. coli cell transformation with plasmid DNA, cultivation in 96-deep-well plates, har-

vesting, SDS-PAGE analysis, and high-throughput affinity purification using the

MagneHis Protein Purification System (Promega, United States) are described in

detail in supplemental experimental procedures 1.1.

Dehalogenase whole-cell activity screening

The reactions were 200 mL in volume and contained 50 mM phosphate-buffered or-

thovanadate (PBO buffer, 40 mM K2HPO4, 10 mM KH2PO4, pH 7.5, with 1 mM ortho-

vanadate), 10 mM H2O2, 5 U mL�1 Curvularia inaequalis chloroperoxidase, 10 mL of

whole cells with optical density 600 (OD600) approximately 5, 12.5 mM aminophenyl

fluorescein, and 10 mM halogenated substrate. The reactions in the HOX assay23

were started by adding whole cells. Each enzyme’s whole-cell activity was measured

in triplicate. The measurement was conducted overnight in a plate reader (30�C) by
measuring fluorescence at 525 nm (488-nm excitation).

Cell-free protein synthesis

The cell-free protein synthesis (CFPS) of 45 selected HLDs was performed using the

PURExpress kit (NEB, United States) according to the manufacturer’s instructions.64

The recommended 250 ng of DNA template per reaction was used. The CFPS reac-

tions were incubated at 37�C for 2.5 h. To maintain precise reaction conditions, a

thermocycler was used for temperature control. The total fractions of HLDs were de-

tected by SDS-PAGE stained by Coomassie brilliant blue R-250 and silver staining

(SilverQuest, Fermentas, United States). Subsequently, the total fractions of HLDs

were centrifuged at 10,000 3 g at 4�C for 1 h. The rest of the sample was dialyzed

using Slide-A-Lyzer MINI Dialysis Devices (Thermo Fisher Scientific, Germany) into

the PBO buffer used for screening HLD activity using the HOX assay.23

Large-scale protein expression and purification

Selectedmutant enzymes were expressed in E. coli BL21(DE3). Cultivation, harvesting,

purification by affinity chromatography, SDS-PAGE analysis, and protein concentration

determination are described in detail in supplemental experimental procedures 1.2.

Thermostability

Thermal unfolding was analyzed independently by four methods: (1) microcuvette

DSF (UNcle, Unchained labs), (2) capillary DSF (Prometheus NT.48, NanoTemper

Technologies), (3) TSA (using SYPROOrange Protein Gel Stain [Thermo Fisher Scien-

tific] in a StepOnePlus Real-Time PCR System [Thermo Fisher Scientific]), and (4) cir-

cular dichroism spectroscopy as a well-established technique (using a Chirascan CD

Spectrometer [Applied Photophysics, UK]). For all methods, the thermostability of

each enzyme was measured in triplicate. All methods are described in detail in

supplemental experimental procedures 1.3.

Temperature profiles and substrate specificity profiles

Both temperature and substrate specificity profiles were measured using the previ-

ously described droplet-basedMicroPEX,31 enabling the characterization of specific

enzyme activity within droplets for typically 6–10 variants in one run. Each activity

value was calculated from 5–10 droplets, representing 5–10 repetitions. The

temperature profiles were measured toward either 1,2-dibromoethane or

1-bromohexane in 5�C increments in the range of 5�C–55�C. The temperatures for
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individual enzymes were chosen based on their Tm and Tonset values (determined by

microscale DSF) so that the activities at seven to nine temperatures were measured

for each enzyme. The substrate specificity of individual enzyme variants was

measured toward 27 representative halogenated substrates, previously chosen to

validate the microfluidic device.31 Each enzyme was assayed at the temperature

closest to its Tmax value (0�C–10�C below Tmax). A detailed protocol of the microflui-

dic method was provided previously,2 and a brief description is available in supple-

mental experimental procedures 1.4.

PCA and hierarchical clustering

The matrix containing the activity data of 24 newly identified HLDs and eight previ-

ously characterized HLDs toward 27 halogenated substrates (all measured on

MicroPEX) was analyzed by PCA in MATLAB (MathWorks, United States) to uncover

the relationships among individual HLDs (objects) based on their activities toward

the set of halogenated substrates (variables). Two PCA models were constructed

to visualize systematic trends in the dataset. The first one was done on the raw

data, which ordered the enzymes according to their total activity. The second PCA

was carried out on the log-transformed data. Each specific activity needed to be in-

cremented by 1 to avoid the logarithm of zero values. The resulting values were then

divided by the sum of the values for a particular enzyme. These transformed data

were used to calculate principal components, and the components explaining the

highest variability in the data were then plotted to identify substrate specificity

groups. The hierarchical clustering analysis was also performed on the log-trans-

formed data using MATLAB (MathWorks, United States).

Conventional dehalogenase activity measurement

The specific activity of all 24 newly identified HLDs was validated by the conventional

method of Iwasaki et al.65 Dehalogenation reactions were performed at temperatures

close to the optimal temperature of each enzyme (Table S10) in 25-mL Reacti Flasks

closed by Mininert valves. The reaction mixture was composed of 10 mL of glycine

buffer (pH 8.6) and 10 mL of the substrate (1,3-dibromopropane). The reaction was initi-

ated by adding 0.2 mL of enzyme solution to the mixture. The reaction progress was

monitored by periodically withdrawing 1-mL samples from the reaction mixture.

Finally, the reaction was stopped by adding 0.1 mL of 35% nitric acid. The reagents

with mercuric thiocyanate and ferric ammonium sulfate, employed for detection of ha-

lides, were subsequently added to the collected samples, and absorbance of the final

mixture was measured spectrophotometrically at 460 nm using microplate reader

SUNRISE (Tecan, Austria). Dehalogenase activities were quantified as the rate of prod-

uct formation with time in three independent repetitions for each enzyme.

Steady-state kinetics and reaction thermodynamics

A newly introduced droplet-based Kinetic Microfluidic Autonomous Platform

(KinMAP) for kinetic analysis, adopted from a previous technology for nanoparticle

synthesis,34 determined the steady-state kinetics and reaction thermodynamics pa-

rameters for a selected set of enzymes. The pH-based fluorescence assay to deter-

mine HLD kinetics and substrate delivery via a substrate partition between oil and

aqueous phase (Figure S12) was the same as in the MicroPEX operation described

above.31 Within one run, the steady-state kinetics of a single enzyme variant was

measured with 1,3-dibromopropane in the temperature range of 25�C–50�C in

5�C increments. The HLD enzymatic rate was determined for each temperature

and six substrate concentrations. Each data point consisted of an average of 20 rep-

etitions. The device and method are described in detail in supplemental experi-

mental procedures 1.5, including Figures S12–S16 and Table S16.
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Global numerical integration of rate equations

The datasets consisting of temperature and concentration dependence of reaction

rates were fitted globally based on numerical integration of rate equations using

KinTek Explorer software 10 (KinTek Corporation, United States),66 which includes

the capability to fit temperature-dependent rate constants.67 A detailed description

of the data fitting is provided in supplemental experimental procedures 1.6.
Enantioselectivity

Kinetic resolution experiments were performed at 20�C. The reaction mixtures con-

sisted of 1 mL of glycine buffer (100 mM, pH 8.6) and 1 mL of a racemic mixture of

2-bromopentane or ethyl 2-bromopropionate. The glycine buffer was selected to

maintain sufficient buffering capacity in the mildly alkaline pH range corresponding

with the pH profiles for most characterized HLDs. A detailed description is provided

by Vanacek et al.8 The kinetic resolution data were fitted globally using KinTek Ex-

plorer software (KinTek Corporation, United States), described in detail in supple-

mental experimental procedures 1.7.
Secondary structure

CD spectra were recorded at room temperature using a Chirascan CD Spectrometer

(Applied Photophysics, UK) equipped with a Peltier thermostat (Applied Photophysics,

UK). Data were collected from 185 nm to 260 nm, at 100-nm min�1, with 1-s response

time and 1-nmbandwidth, using a 0.1-cmquartz cuvette containing the enzymes. Each

spectrum shown is the average of five individual scans corrected for the buffer absor-

bance. Collected CD data were expressed in terms of the mean residue ellipticity

(QMRE). Secondary structure determination and analysis were performedonmeasured

ellipticity from 190 nm to 250 nm using the BeStSel online tool with default settings.68
Quaternary structure

The quaternary protein structures were investigated using analytical gel filtration

chromatography using a Superdex 200 10/300 GL column (GE Healthcare Life Sci-

ences). The ÄKTA FPLC system (GE Healthcare Life Sciences) was initially equili-

brated with a mobile phase composed of 50 mM potassium phosphate buffer and

150 mM NaCl (pH 7.5). NaCl was supplemented to minimize secondary interactions

of the sample components with the resin following the supplier’s instructions. The

protein sample (100 mL at 1 mg mL�1) was injected onto the column and separated

at a constant flow rate of 0.5 mLmin�1 using the mobile phase described above. The

void volume was determined by loading blue dextran (100 mL at 1 mgmL�1). Two gel

filtration calibration mixtures were applied for molecular weight determination (GE

Healthcare Life Sciences). Mixture A of standard proteins contained aldolase

(158,000 Da), ovalbumin (44,000 Da), RNase A (13,700 Da), and aprotinin (6,500

Da). Mixture B of standard proteins contained ferritin (440,000 Da), conalbumin

(75,000 Da), carbonic anhydrase (29,000 Da), and RNase A (13,700 Da).
Native PAGE

The separation of DstA was investigated by native PAGE. Ten microliters of protein

sample (0.5–1.5 mg mL�1) were mixed with 30 mL of 43 loading buffer (3.5 mL of

100% glycerol, 2.5 mL of 1M Tris-HCl pH 6.8, 4 mg of bromophenol blue, and

4 mL of water) and 13 mL of the mix was loaded onto the native gel. Electrophoresis

was performed in Tris-glycine electrophoretic buffer at 110 V and 4�C. According to

the supplier’s protocol, the protein bands of polyacrylamide gels were stained by

InstantBlue protein stain and analyzed by GS-800 Calibrated Densitometer (Bio-

Rad, United States).
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