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A B S T R A C T

CRISPR-based diagnostics have gained increasing attention as biosensing tools able to address limitations in 
contemporary molecular diagnostic tests. To maximize the performance of CRISPR-based assays, much effort has 
focused on optimizing the chemistry and biology of the biosensing reaction. However, less attention has been 
paid to improving the techniques used to analyze CRISPR-based diagnostic data. To date, diagnostic decisions 
typically involve various forms of slope-based classification. Such methods are superior to traditional methods 
based on assessing absolute signals, but still have limitations. Herein, we establish performance benchmarks 
(total accuracy, sensitivity, and specificity) using common slope-based methods. We compare the performance of 
these benchmark methods with three different quadratic empirical distribution function statistical tests, finding 
significant improvements in diagnostic speed and accuracy when applied to a clinical data set. Two of the three 
statistical techniques, the Kolmogorov-Smirnov and Anderson-Darling tests, report the lowest time-to-result and 
highest total test accuracy. Furthermore, we developed a long short-term memory recurrent neural network to 
classify CRISPR-biosensing data, achieving 100 % specificity on our model data set. Finally, we provide 
guidelines on choosing the classification method and classification method parameters that best suit a diagnostic 
assay’s needs.

1. Introduction

Though most known for their role in genetic engineering, Clustered 
Regularly Interspaced Short Palindromic Repeats–CRISPR-Associated 
Protein (CRISPR–Cas) systems are increasingly employed as tools for 
biosensing and in vitro diagnostics (IVDs)(Kaminski et al., 2021; 
Suea-Ngam et al., 2020). Their utility in this regard can be attributed to 
their ability to specifically target exogenous nucleic acid sequences, such 
as those associated with invasive pathogens. Since their introduction, 
CRISPR–Cas-based biosensors have been applied to various diseases 
(Khosla et al., 2022), including cancers(Palaz), metabolic disorders(Ma 
et al., 2024), neurological conditions(Hajian), infectious diseases 
(Arizti-Sanz; Chen et al., 2018; Gootenberg et al., 2017), and cardio-
vascular disease(Chen et al., 2022). Success in each area was made 
possible through iterative optimization of assay chemistries and work-
flows(Chen et al., 2024; Del Giovane et al., 2024). Beyond assay 

optimization, Cas enzymes themselves have been engineered to enhance 
target specificity(Kaminski et al., 2021), catalytic activity(Gootenberg; 
Mahas et al., 2022), or thermal stability(Nguyen et al., 2023; Tian et al., 
2020). Furthermore, novel chemical- and nanomaterial-based reporters 
have been synthesized to increase signals(Green et al., 2022; Yang et al., 
2024), reduce background(Lesinski; Liu et al., 2022), or simplify assay 
readout(Broto; Xiong et al., 2021). Significantly less effort has been 
devoted to optimizing how the data emanating from these biosensors is 
analysed. This is surprising, given that key assay performance charac-
teristics parameters, such as sensitivity, specificity, and time-to-result 
are known to be strongly influenced by data analysis methods 
(Fozouni; Lesinski et al., 2024a). This is particularly important when 
employing data processed in real-time, such as that commonly gener-
ated from CRISPR–Cas-based biosensors(Fozouni). Furthermore, 
although machine learning (ML) is well-established within the diag-
nostic community as a powerful tool for analyzing complex data sets 
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(Richens et al., 2020; Swanson et al., 2023), the combination of ML and 
CRISPR–Cas biosensing remains unexplored.

The rapid growth in CRISPR–Cas biosensing was catalyzed by two 
assays; the DNA Endonuclease-Targeted CRISPR Trans Reporter 
(DETECTR) assay and the Specific High Sensitivity Enzymatic Reporter 
UnLOCKing (SHERLOCK) assay(Abudayyeh; Chen et al., 2018). Whilst 
the intricacies of these assays differ, their mechanisms are conceptually 
similar. In both cases, a Cas protein is programmed to recognize, bind 
(according to 1:1 kinetics), and cleave a specific target DNA (cis-cleav-
age). After cis-cleavage, a conformational change occurs in the Cas 
protein, resulting in a loss of target specificity and the collateral cleav-
age of single-stranded DNA (trans-cleavage), a process which proceeds 
according to Michaelis-Menten kinetics (Fig. 1A). In the presence of a 
single-stranded DNA reporter containing a fluorophore and a quencher, 
both assays generate a fluorescence signal proportional to the trans--
cleavage rate (and determined by the concentration of the initial target 
nucleic acid)(Chen et al., 2018; Gootenberg et al., 2018). Accordingly, 
both assays produce time-varying fluorescence signals that can be 
interpreted in real time. Similarly, to boost assay performance and 
decrease limits-of-detection, both assays are often coupled with Nucleic 
Acid Amplification Tests (NAATs).

Slope-based data analysis is the most common method for analyzing 
fluorescence data obtained from CRISPR–Cas biosensing assays 
(Fozouni; Pena et al., 2023; Ramachandran and Santiago, 2021). For 
example, Pena et al., developed a real-time method in which the first 
derivative of time vs fluorescence curves is analysed(Pena et al., 2023). 
In this method, a sample is deemed positive once the slope of the time 
varying fluorescence signal is greater than a pre-defined threshold (three 
standard deviations above the maximal negative slope) for three 
consecutive measurements. Additionally, Fozouni et al. used simple 
linear regression to determine the slope of fluorescence vs time curves, 

with a sample being deemed positive when its slope is greater than the 
average negative slope plus two standard deviations (95 % confidence 
interval - CI). Both approaches allow samples to be categorized in real 
time, while also decreasing the time needed for a positive diagnosis. This 
has important implications for point-of-care diagnostics, where 
time-to-result is often a critical performance metric(Atkinson et al., 
2016).

Although effective in many situations, slope-driven methods are far 
from perfect. Numerical differentiations often simply describe a slope at 
a single point, and thus ignore the broader curve shape. Additionally, 
single-point methods are highly sensitive to noise, with minor signal 
fluctuations potentially leading to large variations in the local slope that 
can significantly impact the ability to precisely categorize samples(Pena 
et al., 2023). Linear regression methods that account for multiple data 
points circumvent this issue. However, linear regression often mis-
describes non-linear data by forcing a linear fit upon the dependent and 
independent variables. Data from NAAT–CRISPR-Cas assays is the 
product of several non-linear processes (i.e. exponential amplification, 
1:1 binding, Michaelis-Menten kinetics) (Fig. 1A). Thus, linearity is 
often only observed during a short portion of the assay. For high-titer 
samples, the linear phase is typically very short and thus normally 
described by a very small number of data points. Conversely, for 
low-titer samples, a linear fit is only possible after collecting many data 
points, requiring a longer time-to-result. As forcing a linear model onto 
non-linear data necessarily discards such non-linear effects, more so-
phisticated methods such as nonparametric statistics or ML are better 
suited for such analyses (Fig. 1B and C).

Although rarely used in CRISPR IVDs, nonparametric tests are 
routinely used to analyze and categorize real-time diagnostic data from 
lateral flow immunoassays (LFIAs)(Colombo et al., 2023). Nonpara-
metric tests make no or minimal assumptions regarding the distribution 

Fig. 1. NAAT–CRISPR–Cas biosensing and the classification algorithms evaluated in this work. A) Schematic describing the RPA–CRISPR–Cas12a reaction 
used to generate the data in this study. B) Graphical representations of Fluorescence magnitude, average slope, and single-point slope methods. C) Graphical rep-
resentations of the non-parametric statistical tests and LSTM neural network presented in this work.
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of the data. Thus, they can be more easily applied to smaller or less 
well-understood data sets. ML approaches have also gained traction in 
diagnostics, particularly those that employ recurrent neural networks 
(RNNs), a network architecture in which recent past events are included 
in computational decisions(McRae et al., 2022; Rahman et al., 2023). 
This capacity for “memory” enables classification and prediction from 
data trends rather than single data points. Such approaches have been 
effectively used in real-time NAATs, such as quantitative Polymerase 
Chain Reaction (qPCR) and quantitative loop-mediated isothermal 
amplification (qLAMP)(Sun et al., 2023; Waheed et al., 2022), and LFIAs 
(S. S. Lee et al., 2023; Turbé et al., 2021), but have yet to be integrated 
into CRISPR–Cas biosensors(Lee et al., 2022; Y. Y. Lee et al., 2023).

Herein, we use non-parametric statistical tests and a Long short-term 
Memory (LSTM) network to analyze time-varying fluorescence data 
from a CRISPR–Cas biosensing assay and show how these tools can be 
used to improve both the speed and accuracy of clinical sample classi-
fication. Specifically, we employ methods based on a family of non- 
parametric distribution goodness-of-fit statistics including the 
Kolmogorov-Smirnov (K-S) test, Anderson-Darling (A-D) test, and 
Cramér-von Mises (C-vM) test, as well as an LSTM network and apply 
these methods to data sets obtained from clinical HPV-16 vaginal swab 
samples. We show that non-parametric statistical methods and the LSTM 
network consistently outperform traditional analytical methods based 
on metrics such as sensitivity, specificity, and time-to-result (TTR). This 
work highlights the currently unexplored potential of integrating sta-
tistical analyses and ML into CRISPR–Cas biosensing systems.

2. Materials and methods

2.1. Fluorescence magnitude test

At each time point, analysis was performed without knowledge of 
any subsequent data. First, a time-dependent negative threshold was 
determined by taking the mean and standard deviation of the fluores-
cence data of all 24 negative trials at each time point. The cutoff was 
determined as the average of the negatives plus three standard de-
viations at a given time point. A sample was deemed positive when three 
consecutive fluorescence measurements exceeded the calculated 
threshold (a run length of 3).

2.2. Average slope test

At each time point, analysis was performed without knowledge of 
any subsequent data. First, a time-dependent negative average slope 
threshold was determined for each time, tf, by performing a linear 
regression from t=0 to t=tf on all the negative samples using the stats. 
linregress() function of the scipy.stats Python package. The threshold at 
each time was then calculated as the returned predicted slope plus three 
standard deviations of the predicted slope. For sample analysis, the same 
linear regression process was performed at each time point, and this 
value compared to the threshold value. A sample was deemed positive 
when three consecutive slope measurements exceeded the calculated 
thresholds, as described by Fouzoni et al.(Fozouni).

2.3. Single-point slope test

At each time point, analysis was performed without knowledge of 
any subsequent data. The maximum negative slope was determined by 
first finding the single point slope (change in fluorescence divided by 
change in time) for each measurement point in each of the 24 negative 
trials on the interval t0 = 0 to tf = 90 min and then taking the maximum 
observed value. The threshold was then calculated as this maximum plus 
three standard deviations of the set of all observed negative slopes. To 
analyze a sample, the single point slope (change in fluorescence dividing 
by change in time) was calculated at each time, and this value compared 
to the threshold value. A sample was deemed positive when three 

consecutive slope measurements (a run length of 3) exceeded the 
calculated thresholds, as described by Pena et al. (2023)

2.4. Kolmogorov-Smirnov test

At each time point, analysis was performed without knowledge of 
any subsequent data. This test compares two sample populations and 
returns a statistic indicating the likelihood that the two populations are 
from the same probability distribution. We constructed two populations; 
one from the sample to be analysed as well as one from the set of all 
negative sample readings. In both cases, the populations included only 
datapoints from the current time and two previous times (a sliding 
analysis window of length 3). In the case of the test to be analysed, this 
resulting population only contained data from that test, whereas the 
negative population contained datapoints within the sliding window for 
all 24 known negative tests. The two populations were then compared 
using a 2-sample, 2-sided Kolmogorov-Smirnov test (⍺ = 0.003) for 
goodness of fit from the ks_2samp() function of the scipy.stats Python 
package(Borovkov; Darling, 1957). Samples were identified as being 
positive after p < ⍺ once (i.e. requiring a run length of 1). This indicated 
that the sample was from a different distribution than the reference 
negative set, with associated probability of a false positive (type I error) 
equal to ⍺. Cut-off values for run length, window length and ⍺ threshold 
were optimized to maximize total accuracy (Table S2, Figs. S2–4).

2.5. Anderson-Darling test

At each time point, analysis was performed without knowledge of 
any subsequent data. As above, two populations were constructed from 
the sample to be analysed as well as the set of all negative sample 
readings. The population to be analysed was determined for each time- 
point using a sliding window of length three. The same was then done 
for a combination of all negative tests. These two populations were then 
compared using a k-sample Anderson-Darling(Anderson and Darling, 
1952) test for goodness of fit from the anderson_ksamp() function of the 
scipy.stats Python package with ⍺ = 0.0015. The two populations were 
deemed to be from different distributions, indicating a positive sample, 
if p < ⍺ once (a run length of 1). Cut-off values for run length, window 
length and ⍺ threshold were optimized to maximize total accuracy 
(Table S2, Figs. S5–7).

2.6. Cramér-von mises test

At each time point, analysis was performed without knowledge of 
any subsequent data. As described above, two populations were con-
structed from the sample to be analysed as well as the set of all negative 
sample readings. The population to be analysed was determined for each 
time-point using a sliding window of length six. The same was then done 
for a combination of all negative tests. These two populations were then 
compared using a 2-sample, Cramér-von Mises(Cramér) test for good-
ness of fit from the cramervonmises_2samp() function of the scipy.stats 
Python package with ⍺ = 0.0001. The two populations were deemed to 
be from different distributions, indicating a positive sample, if p < ⍺ 
once (a run length of 1). Cut-off values for run length, window length 
and ⍺ threshold were optimized to maximize total accuracy (Table S2, 
Figs. S8–10).

2.7. Long short-term memory network

An LSTM network is a specialised type of recurrent neural network 
designed to capture and retain information from sequential data. Here, 
the LSTM network was applied independently to the time-series fluo-
rescence data from each trial. In training, the objective function in the 
form of binary cross-entropy loss, L, is minimised, for N sequences, i.e. 
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L= −
1
N

∑N

i=1
[yi log(ŷi)+ (1 − yi)log(1 − ŷi)]

Where yi is the true label of series i, ŷi is the predicted probability of 
series i. To obtain representative values, data were averaged across all 
seeds. For each seed, data were split into training and validation sets, 
representing 70 % and 30 % of the full data, respectively. In this work, 
the LSTM RNN was built and trained using PyTorch(Paszke) with 2 
layers of size 64, and a final sigmoid layer. The predicted label was set as 
positive (1) when the output of the final layer of the LSTM network 
exceeded the chosen threshold of 0.95 (Fig. S11). The models were 
trained with the Adam optimiser, with a learning rate of 5 × 10− 5. As 
the dataset is small, a dropout rate of 0.2 was chosen, along with an L2 
regularisation on the parameters, as well as early stopping at 5000 
epochs. Additionally, to analyze the effects of overfitting, 10 different 
seeds were used to split the dataset into training and validation sets, and 
10 corresponding models trained and evaluated on each of these sets.

2.8. Acquisition of the model data set

For all analyses we used a previously published data set from Lesinski 
et al.(Lesinski). In this work the authors analysed 16 (8 positive and 8 
negative, with triplicate assays of each sample) vaginal swabs for 
HPV-16. Specifically, we used the RPA-CRISPR Cas12a one-pot assay 
data. Briefly, the swabs were processed, concentrated, and analysed in 
an RPA-CRISPR Cas12a one-pot assay with fluorescence readout every 2 
min. A in-depth description of the sample collection and preparation, as 
well as all assay procedures, can be found in the original work(Lesinski). 
This dataset included the RPA-CRISPR Cas12a raw fluorescence values 
and Anyplex qPCR values for the clinicals samples.

3. Results and discussion

3.1. Slope- and magnitude-driven classification

To establish appropriate benchmarks for binary classification in our 
CRISPR-Cas assay, we first evaluated the previously described slope- 
based methods reported by Pena et al. and Fouzoni et al. on the model 
data set(Fozouni; Pena et al., 2023). We also included a fluorescence 
magnitude analysis for comparison, as this is arguably the simplest 
method for classifying positives and negatives in analytical assays(Chen 
et al., 2018; Fozouni et al., 2021). We applied these widespread methods 
to previously published data obtained from an RPA–CRISPR-Cas assay 
for detecting HPV-16(Lesinski). The data set included time-varying 
fluorescence data from 24 positive and 24 negative assays, obtained 

using clinical vaginal swab samples, as confirmed by Allplex qPCR 
(Lesinski) (Table S1). From these analyses, we calculated key perfor-
mance characteristics, namely sensitivity, specificity, and total accuracy 
(percentage of samples correctly indicated). These metrics are quanti-
fied in Fig. 2.

These results highlight several significant differences between the 
methods. The sensitivity of both the fluorescence magnitude and single- 
point slope approaches was poor, with respective true positive rates of 
42 % and 38 %. Conversely, both tests displayed perfect specificity, 
yielding no false positives (100 % true negatives). The average slope 
method yielded a far greater sensitivity of 71 %, but was less specific, 
with a true negative rate of 88 %. The average slope algorithm 
demonstrated a better total accuracy. These data suggest that the fluo-
rescence magnitude and single point slope algorithms are relatively 
strict, prioritising greater specificity at the expense of lower sensitivity. 
This could be important for situations in which false positives have a 
greater impact than false negatives, such as rare diseases with expensive 
and harmful treatments (e.g, rare cancers).

3.2. Non-parametric statistical classification

After establishing the performance of the fluorescence magnitude 
and slope-based analysis methods, we next evaluated the sensitivity, 
specificity, and total accuracy of nonparametric classification methods. 
We chose nonparametric methods since data from CRISPR–Cas assays 
cannot be assumed to originate from a known distribution. The K-S test 
determines the probability of two data sets being sampled from the same 
distribution by comparing their empirical cumulative distribution 
functions (ECDFs) (Fig. S1). The K-S test is a quadratic empirical dis-
tribution function (EDF) test, a family of statistical tests that also in-
cludes the C-vM test and the A-D test (Darling, 1957). Though 
conceptually similar, these tests diverge in how they compare the two 
distributions. The K-S test compares the maximum difference between 
the two distribution functions, making it less sensitive to deviations at 
the tails of the distributions. Conversely, the A-D test uses a weighted 
sum of the differences between the distribution functions, with more 
weight given to differences in the data at the extremes of the distribu-
tions. The C-vM test compares the squared differences between the 
distribution functions, integrated over the entire data range. Accord-
ingly, it is sensitive to deviations across the entire distribution 
(Baumgartner and Kolassa). Given these differences, we decided to 
compare the performance of the three methods on our model data set 
(Fig. 3). In each case, empirical distribution functions were constructed 
from multiple consecutive measurements (window length). To improve 
robustness, samples were only classified after several consecutive dis-
tributions reached significance. We assessed multiple different 

Fig. 2. Performance of widespread slope-based algorithms. A) Confusion matrix for the fluorescence magnitude method, analysed using a 99.7 % CI. B) 
Confusion matrix for the average slope method, analysed using a 99.7 % CI. C) Confusion matrix for the single point slope method, analysed using a 99.7 % CI.
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confidence intervals, window lengths, and run lengths (Figs. S2–S10), 
choosing the parameters that provide the greatest total accuracy.

As seen in Fig. 3, all three quadratic EDF classification methods were 

more sensitive than the slope-based methods, with true positive rates of 
83, 75, and 88 % for K-S, A-D, and C-vM, respectively. However, this 
comes at the expense of specificity, as evidenced by the lower true 

Fig. 3. Performance of quadratic EDF classification methods. A) Confusion matrix of the K-S test. Confidence interval = 99.7 %, window length = 3, run length 
= 1. B) Confusion matrix of the A-D test. Confidence interval = 99.85 %, window length = 3, run length = 1. C) Confusion matrix of the C-vM test. Confidence 
interval = 99.99 %, window length = 6, run length = 1.

Fig. 4. Performance of an LSTM RNN. A) Confusion matrix. B) Sensitivity, specificity and accuracy of each LSTM network seed. C) LSTM network decision/ 
confidence visualization over time for samples in a representative seed. The prediction threshold of 0.95 is indicated with a dotted black horizontal line. Solid lines 
indicate samples that are actual positives, while dashed lines indicate actual negatives. Samples classified as positive by the LSTM network are indicated in blue. This 
seed reported a single false negative, as shown by the solid red line. The LSTM network reported no false positives across all seeds. D) Average time-to-result of each 
LSTM network seed. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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negative rate of 92 % observed for all three methods. In terms of total 
accuracy, the quadratic EDF statistical tests significantly outperform 
both slope-based and fluorescence magnitude methods, with accuracies 
of 87.5, 83.33 and 89.58 %.

3.3. Classification using an LSTM RNN

With the growth in accessible computational power, ML methods 
have proven valuable in classification tasks(Sen et al., 2020; Singh et al., 
2016). When considering time-varying data, recurrent neural networks 
are particularly relevant(Miao et al., 2015; Pawar et al., 2019). RNNs are 
a categorization tool where previous data information can be included in 
current decision-making processes. RNNs can handle such data due to 
their capacity for memory. Long-short-term-Memory RNNs employ 
three-way gating mechanisms (input, forget and output gates) to control 
the flow of information and capture long and short-term trends when 
making predictions. This is achieved using memory cells and hidden 
states, with one LSTM network cell being used as a node in the classic 
neural network configuration(HochreiterSchmidhuber). Data at each 
sequential point are passed into the LSTM network, along with the cell 
and hidden states of the previous sequential point. When an LSTM 
network is used for binary classification, the last layer comprises a 
sigmoidal activation function. Accordingly, the direct output of the 
LSTM network is a value between 0 and 1, representing the probability 
of the sequential data being the positive (1) class. A more detailed 
description of long short-term Memory RNNs is given by Staudemeyer 
and Morris(Staudemeyer). To test the utility of LSTM networks in clas-
sifying positive and negative samples in CRISPR–Cas assays, we estab-
lished an LSTM network architecture, optimized the prediction 
threshold (Fig. S11), and applied it to our data set (Fig. 4a). Prior to 
training, the data set was randomly split into training and validation 
sets, the composition of which were dependent on the instantiated 
random number seed. This ensures a more accurate view of the perfor-
mance of the LSTM network by observing the effect of different training 
set configurations. We observed different performance levels from 
different seeds and therefore different topologies of the training domain 
(Fig. S12). Accordingly, to avoid random bias, we used ten seeds to 
perform iterations of model training, validation, and data analysis 
(Table S3). Finally, we averaged the performance metrics of all valida-
tion sets from the ten models (Fig. 4a).

We applied the LSTM network to our data set and observed a 
sensitivity of 87 %, specificity of 100 % and total accuracy 92.14 % 
(Fig. 4b). Accordingly, the LSTM network outperforms both the slope- 
based and EDF statistical methods. However, the limited sample size 
used to train the network does increase the possibility of overfitting the 
LSTM network, distorting performance. This risk was mitigated by 
training in multiple independent trials with random seeds. An example 
of the decision process over time for one seed is shown (Fig. 4c). At each 
time point, the LSTM network analyses data from the start of the assay to 
that time point and returns a measure of confidence (between 0 and 1) 
that the data represents a positive test. Confidences above a threshold of 
0.95 were accepted as positive tests, whereas confidence values less than 
0.95 were classified as a negative test. Further, in assessing performance 
it is important to account for the variation introduced during the 
training process by comparing different models trained with different 
random seeds (Fig. 4D). In doing so, it becomes apparent that, although 
the assessment metrics may vary from each seed, the overall trend is 
toward improved performance, when comparing to classical statistical 
methods. However, it is important to note the significance of the data 
orientation on the results, highlighting the need for larger datasets when 
employing an LSTM network. Application of LSTM RNNs to other 
diagnostic systems would naturally require retraining to account for the 
specific features of each assay. That said, our data indicates that this 
effort will lead to improvements in test accuracy.

3.4. Impact of classification method on time-to-result

In addition to sensitivity, specificity, and accuracy, TTR is an 
important measure of assay performance. Obtaining a result within a 
specific time frame is paramount in many scenarios, such as rapid testing 
during an infectious disease epidemic/pandemic(Goldstein and Burstyn, 
2020; Oeschger et al., 2021). Accordingly, we investigated how the 
different classification techniques impact TTR (Fig. 5A and B). Here, 
TTR is defined as the first time point at which a given sample matches 
the positive criterion, according to each individual method.

The data in Fig. 5 highlight several important features of each 
method. The slope-based methods returned the slowest average TTRs, 
ranging between 35.0 and 42.8 min. As shown in Fig. 5C, the range of 
TTRs for each method was large; 30–80 min, 26–90 min, and 24–68 min 
for the fluorescence magnitude, average slope, and single-point slope 
methods, respectively. The EDF methods returned the fastest average 
TTRs, (between 13 and 14.7 min), with ranges being 6–36 min, 6–38 
min and 10–32 min for the K-S, A-D, and C-vM tests, respectively. The 
LSTM network returned an average TTR of 25.4 min. Notably, the LSTM 
network produced the smallest range, with TTRs between 16.5 and 46 
min (note the fractional minute is an artifact of averaging a given 
sample’s TTR from multiple seeds) (Fig. S11). Importantly, a statistically 
significant difference between these averages was only achieved be-
tween slope-based methods and the EDF methods, with similar methods 
(i.e. average slope vs single-point slope, or A-D vs K-S) generally dis-
playing equivalent performance. We attribute this to the large variance 
in target titre between each patient sample. Considering the high sen-
sitivities and average TTRs of 4.67, 4.67 and 6 min for K-S, A-D, and C- 
vM, respectively, it is clear that these methods prioritise rapid and ac-
curate identification of positives. Despite the high confidence intervals 
(99.985 %, 99.97 %, and 99.99 % for the K-S, A-D, and C-vM respec-
tively) utilized for the three methods, TTRs were significantly shorter 
than the benchmark methods. These performance metrics can be regu-
lated by adjusting test parameters, such as confidence interval, window 
length and consecutive run length. Although a higher confidence in-
terval makes the test “stricter” in that the bar for a sample being iden-
tified a positive is higher, this may increase TTR and lower sensitivity. 
Conversely, a shorter run length or lower confidence interval may 
perform well on sensitivity, catching even low-titer (and thus low- 
signal) tests quickly, but at the cost of specificity, where higher signal 
negatives are misidentified as positive. In this work, the high confidence 
interval was selected to maximize the total number of samples correctly 
identified in the data set. This highlights the importance of considering 
the clinical implications of false positives or false negatives for the 
particular diagnostic assay and setting the relevant parameters accord-
ingly (Fig. S12).

Ranking the methods from lowest TTR (fastest) to highest TTR 
(slowest) for each sample (Fig. 5B) supports the trends observed for the 
average TTRs. The EDF methods are consistently fastest, followed by the 
LSTM network, then the slope-based methods, and finally the fluores-
cence magnitude method. In 20 out of 24 samples, the shortest (or joint- 
shortest) TTR was returned by an EDF test, with the Kolmogorov- 
Smirnov ranking 1st (or joint 1st) in 14 samples, the Anderson-Darling 
in 13, and the Cramèr-von Mises in ranking 1st in 6 samples. Interest-
ingly, the four samples in which an EDF test did not provide the shortest 
TTRs are the ones in which no result was returned at all. In these cases, 
the LSTM network was the only method that correctly identified these 
positives, suggesting superior sensitivity. At the other extreme, the 
fluorescence magnitude method yielded the shortest TTR in 8 out of the 
10 samples it correctly identified (out of a total of 24), suggesting this 
analysis method is both the slowest and least sensitive.

Fig. 5C provides a summary of the data obtained in this study and 
highlights the impact that different analysis methods have on perfor-
mance metrics. By simply changing the analysis method, assay sensi-
tivity ranged from 38 % to 100 %, specificity from 88 % to 100 %, and 
the average TTR from 4.7 min to 42.8 min. This strongly suggests that 
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different classification approaches should be considered for different 
applications, depending on priorities. The Kolmogorov-Smirnov, 
Anderson-Darling, and Cramér-von Mises tests may be most appro-
priate if a highly sensitive and rapid assay is more important than assay 
specificity. For example, in screening of mild but infectious diseases, a 
test may optimize for rapid and accessible feedback, favouring false 
positives with a non-harmful intervention and the ability to retest over a 
false negative and disease spread. Conversely, the LSTM RNN approach 
may be more appropriate if specificity is more important than sensitivity 
and assay time, and enough data is available to allow representative 
training of the network. The LSTM network may be more relevant when 
diagnosing diseases such as cancer, where treatments can require the 
administration of potentially harmful therapies, a test should take a 
more conservative classification approach, minimizing false positives at 
all costs. Finally, our results highlight the impact of test parameters such 
as confidence interval, window length, and consecutive run length 
(number of consecutive calls necessary to trigger positive indication) on 
sensitivity, specificity, and time-to-result. Accordingly, these parameters 
should be carefully optimized for each individual assay.

4. Conclusions

Whilst significant effort has focused on optimizing the chemistry and 
biology of CRISPR–Cas biosensing reactions, the analysis of CRISPR–Cas 
biosensing data has received relatively little attention despite its 
essential role within the IVD workflow. This work illustrates that sta-
tistical and ML methods have advantages in speed and accuracy over 
traditional fluorescence magnitude and slope-based approaches. Spe-
cifically, the K-S, A-D, and C-vM tests used in this work displayed 
optimal results across both performance metrics, having both the lowest 
TTR and the highest overall accuracy. The LSTM RNN, whilst being 
slightly less sensitive, displayed superior specificity than the statistical 
methods we tested, and outperformed traditional slope-based methods. 
Whilst we acknowledge the importance of increasing the relatively small 
data training datasets used in this work, we have shown that RNNs can 
be used as powerful classifiers in CRISPR–Cas diagnostics and that future 
application to large scale datasets has significant potential.

It is important to stress that we take no stance on the “best” opti-
mization strategy. Rather, we simply aim to establish the idea that the 
choice of analysis method is equally as important as the inherent 
CRISPR–Cas biosensor performance. Considering the rapid growth of ML 
methods, we hope that this work sparks interest in using other ML 

Fig. 5. Comparison of TTR and accuracy metrics across all analysis methods. A) TTR values for tests analysed using the seven different methods (i) as well as 
pairwise comparisons for statistically significant differences in the TTR of each test(ii). B) Ranking of each method, from fastest (1) to slowest (7). False negatives are 
grouped as FN. C) TTR, specificity, sensitivity, and accuracy for each test.
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methods for the analysis and classification of CRISPR–Cas (and other) 
biosensing data. One potential avenue in this regard would be to explore 
different approaches for different aspects of assay classification (i.e. one 
method for classifying positive vs negative, and another for quantifica-
tion of analyte concentration), and then employing these in parallel. 
Further avenues involve employing a mixture of expert architecture, a 
technique recently employed in the field of large language models to 
much success(Dong et al., 2024; Li et al., 2024). In the context of 
CRISPR–Cas biosensors, this could involve employing a mixture where 
some models (“experts”) excel in rapidly calling high-signal positives 
and others in differentiating low-signal positives vs negatives. At each 
time point a router network would select the experts most suited to 
analyze the input data. Regardless of the route, the data presented 
herein suggests that applying concepts from machine learning to 
CRISPR–Cas diagnostics represents a promising and direct route for 
improving performance. Importantly, though we evaluated these 
methods on a model data set obtained from a CRISPR–Cas assay, they 
could easily be adapted and applied to any continuous data sets. It is our 
hope that others adopt and adapt these methods in their own work to 
broadly improve the performance of CRISPR-Cas-based diagnostic 
assays.
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Turbé, V., Herbst, C., Mngomezulu, T., Meshkinfamfard, S., Dlamini, N., Mhlongo, T., 

Smit, T., Cherepanova, V., Shimada, K., Budd, J., Arsenov, N., Gray, S., Pillay, D., 
Herbst, K., Shahmanesh, M., McKendry, R.A., 2021. Nat. Med. 27, 1165–1170. 
https://doi.org/10.1038/s41591-021-01384-9.

Waheed, W., Saylan, S., Hassan, T., Kannout, H., Alsafar, H., Alazzam, A., 2022. Sci. Rep. 
12, 4132. https://doi.org/10.1038/s41598-022-07954-2.

Xiong, E., Jiang, L., Tian, T., Hu, M., Yue, H., Huang, M., Lin, W., Jiang, Y., Zhu, D., 
Zhou, X., 2021. Angew. Chem. Int. Ed. 60, 5307–5315. https://doi.org/10.1002/ 
anie.202014506.

Yang, C., Du, C., Yuan, F., Yu, P., Wang, B., Su, C., Zou, R., Wang, J., Yan, X., Sun, C., 
Li, H., 2024. Biosens. Bioelectron. 251, 116089. https://doi.org/10.1016/j. 
bios.2024.116089.

N.K. Khosla et al.                                                                                                                                                                                                                               Biosensors and Bioelectronics 279 (2025) 117402 

9 

https://doi.org/10.1016/j.xcrm.2023.101037
https://doi.org/10.1021/acs.accounts.1c00383
https://doi.org/10.1021/acs.accounts.1c00383
https://doi.org/10.1021/acssynbio.1c00107
http://refhub.elsevier.com/S0956-5663(25)00276-3/sref39
http://refhub.elsevier.com/S0956-5663(25)00276-3/sref39
http://refhub.elsevier.com/S0956-5663(25)00276-3/sref39
http://refhub.elsevier.com/S0956-5663(25)00276-3/sref39
https://doi.org/10.1007/978-981-13-2285-3_58
https://doi.org/10.1007/978-981-13-2285-3_58
https://doi.org/10.1016/j.jmoldx.2023.03.009
https://doi.org/10.1016/j.jmoldx.2023.03.009
https://doi.org/10.5120/ijca2023923147
https://doi.org/10.1021/acs.analchem.1c00525
https://doi.org/10.1021/acs.analchem.1c00525
https://doi.org/10.1038/s41467-020-17419-7
https://doi.org/10.1038/s41467-020-17419-7
https://doi.org/10.1007/978-981-13-7403-6_11
http://refhub.elsevier.com/S0956-5663(25)00276-3/sref46
http://refhub.elsevier.com/S0956-5663(25)00276-3/sref46
http://refhub.elsevier.com/S0956-5663(25)00276-3/sref46
http://refhub.elsevier.com/S0956-5663(25)00276-3/sref46
https://doi.org/10.48550/arXiv.1909.09586
https://doi.org/10.1021/acssensors.0c01488
https://doi.org/10.1016/j.bspc.2023.104721
https://doi.org/10.1016/j.cell.2023.01.035
https://doi.org/10.1016/j.ijbiomac.2020.01.079
https://doi.org/10.1038/s41591-021-01384-9
https://doi.org/10.1038/s41598-022-07954-2
https://doi.org/10.1002/anie.202014506
https://doi.org/10.1002/anie.202014506
https://doi.org/10.1016/j.bios.2024.116089
https://doi.org/10.1016/j.bios.2024.116089

	Machine learning and statistical classification in CRISPR-Cas12a diagnostic assays
	1 Introduction
	2 Materials and methods
	2.1 Fluorescence magnitude test
	2.2 Average slope test
	2.3 Single-point slope test
	2.4 Kolmogorov-Smirnov test
	2.5 Anderson-Darling test
	2.6 Cramér-von mises test
	2.7 Long short-term memory network
	2.8 Acquisition of the model data set

	3 Results and discussion
	3.1 Slope- and magnitude-driven classification
	3.2 Non-parametric statistical classification
	3.3 Classification using an LSTM RNN
	3.4 Impact of classification method on time-to-result

	4 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A Supplementary data
	Data availability
	References


