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The synthesis of metal-free graphene-based photocatalysts has received great attention recently due to
their expected contributions to the development of solar-based hydrogen generation via water-splitting
in a low cost and ecological manner. In this work, a new method for the generation of nitrogen-doped
graphene-based powder employing an alternative solution to commonly used toxic and hazardous
organic solvents is presented. The procedure involves ultraviolet pulsed laser irradiation of graphene
oxide (GO) flakes dispersed in 1-butyl-3-methylimidazolium [bmim]-based ionic liquids using both
chloride and acetate anions. The structural and compositional analysis using transmission electron mi-
croscopy, X-ray photoelectron and infrared spectroscopy indicate that the irradiated GO becomes
partially reduced and doped with graphitic, pyrrolic and pyridinic nitrogen species. Interestingly, the
relative content of the nitrogen functionalities is controlled by the anion in the ionic liquid and its
concentration, with the obtained graphene-based powders showing higher photocatalytic activity than
GO. Furthermore, a remarkable synergistic effect is observed for GO-[bmim]-acetate powder (acting as
co-catalyst) in combination with anatase TiO, nanoparticles. The presented method opens new research
avenues for the cost-effective mass production of graphene-based photocatalysts for water splitting
applications.

© 2018 Elsevier Ltd. All rights reserved.

manner involves the photoinduced splitting of water into hydrogen
and oxygen using semiconductor-based photocatalysts [2]. Signif-

1. Introduction

The massive and ever growing amount of energy consumed by
mankind (currently based on fossil fuels) is causing unprecedented
damage to the biosphere. Accordingly, the substitution of conven-
tional energy sources by renewable-based technologies is impera-
tive. One of the most promising renewable alternatives involves the
use of hydrogen as a fuel, since hydrogen can be produced from
renewable resources and can be safely stored [1]. A promising
strategy for converting solar energy into clean and carbon-free Hy
fuel at low-moderate cost and in an environmentally neutral
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icantly, the main problem associated with H, generation from
water is achieving water oxidation with photogenerated holes.
However, using organic compounds, whose oxidation is thermo-
dynamically more favourable than water, impedes electron-hole
recombination in the semiconductor and, therefore, the reduction
process (H, generation) is favoured. The overall process of het-
erogeneous photocatalytic H, generation through the consumption
of organic compounds can be also interpreted as photoinduced
biomass reforming or photoreforming [3,4].

A large number of semiconductor photocatalysts have been
investigated [2]. TiO; is one of the most extensively investigated
due to its low cost, abundance, chemical stability, and minimal
toxicity [5]. At present, most established photocatalyst systems use
noble-metal-based co-catalysts, mainly Ry, Rh, Pd, Pt, Au and Ag, to
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ensure high photocatalytic performance [6]. Such photocatalysts
can be used either in a powdered or electrode-coated form [3,7,8].
In this respect, it is important to note that the varying availability of
many important chemical elements poses major challenges for the
widespread implantation of renewable technologies, including
photocatalytic-based ones. Accordingly, substitute materials are
required [9]. An attractive alternative to transition metals and rare-
earths are metal-free carbon nanomaterials, which show unique
properties, including high electrical conductivity, large surface area
and tunable morphologies. In addition, they can be generated in
abundant quantities and via cheap, robust and non-toxic routes. In
this context, graphene-based materials have recently been of
particular interest as they exhibit extraordinary physico-chemical
properties as photo- and co-catalysts [10]. Significantly, their
excellent mechanical, thermal and electrical properties, in addition
to their large surface area, make graphene-based materials ideal
candidates for the development of relatively low-cost and high
performance photocatalysts [11]. However, new carbon-based de-
rivative materials together with advanced synthetic pathways that
require non-hazardous processing technologies (e.g. avoiding the
use of toxic organic solvents) are still required to ensure further
improvements in water splitting. In particular, graphene oxide (GO)
materials, which are composed of graphene sheets bonded to
oxygen-containing chemical groups, have become popular in
water-spliting applications due to their rich chemistry and deriv-
atization possibilities [12]. GO sheets can be reduced by chemical
routes at high temperatures, leading to a material that resembles
pristine graphene, so called reduced GO (rGO). More recently, laser
irradiation of GO nanosheets in different environments has allowed
their photoreduction [13—16] and doping [17—21]. Indeed, GO can
adapt an extended conformation in aqueous solution, which makes
it an effective medium for photocatalytic water-splitting without
the need for noble metal co-catalysts [11,22]. Finally, GO exhibits p-
type conductivity, leading to the creation of an accumulation layer
at the GO/water interface, which favours water reduction to
hydrogen [23].

The replacement of functional oxygen groups on the GO sheet
edge with nitrogen-containing chemical groups transforms GO into
an n-type semiconductor [23,24]. Indeed, the direct substitution of
carbon atoms with nitrogen in the graphene lattice induces the
modulation of optical and electronic properties [25]. Since nitrogen-
containing GO exhibits n-type characteristics, it assists the promo-
tion of hole transfer for water oxidation to oxygen [22]. Thus,
modification of graphene sheets to exhibit both p- and n-type
properties may produce a photocatalytic medium that is effective for
overall water-decomposition into H, and O, [26] with improved
efficiency at visible wavelengths. The high conductivity of graphene
domains in rGO additionally enhances the effective exciton separa-
tion and charge transfer processes essential for overall water-
splitting. Accordingly, metal-free graphene-based photocatalysts
are likely to make solar-based hydrogen generation from water-
splitting achievable at low cost and in an environmentally-friendly
manner. To date, the synthesis of photocatalysts is tipically ach-
ieved using solution-based methods [27]. Although these techniques
possess attractive features, they are not bereft of disadvantages, such
as chemical incompatibilities, problems in synthesizing multicom-
ponent materials and the need for complex multi-step processes,
which means the presence of toxic chemical substances and high
temperatures for several hours. Recently, it has been demonstrated
that laser irradiation of GO sheets dispersed in an ammonia-rich
liquid medium arises as an effective strategy for the introduction
of nitrogen-based heteroatoms into the rGO structure [28]. However,
ammonia is a corrosive and toxic chemical, and therefore, the quest
for an enviromentally friendly and non-toxic process enabling an
efficient and controllable nitrogen doping of GO is of valuable

importance for further developments in the field. Interestingly, this
technique could account for a facile, high-throughput and versatile
method for the synthesis of graphene-based photocatalyst powders
for production of solar hydrogen.

In this contribution, we report an envirometally friendly and
non-toxic synthesis of photoactive N-doped rGO photocatalyst
powders via laser irradiation of GO sheets immersed in nitrogen-
containing ionic liquids (ILs). ILs are low temperature molten salts,
and hence, are non-volatile liquids composed entirely of ions below
or around room-temperature [29]. ILs are commonly referred to as
designer solvents; that is, in contrast to conventional solvents their
composition can be adjusted to dictate reactions and reagents sol-
ubility. For example, their hydrophilicity or hydrophobicity can be
adjusted by judicious choice of the organic cation and the identity of
the anion employed during synthesis [30]. Their ionic behaviour has
been used to influence crystallization processes [31], and further-
more, their wide electrochemical window has enabled the electro-
deposition of materials that could not be deposited from common
aqueous or organic solvents [32]. However, in all such cases ILs are
employed as enviromentally friendly solvents for materials engi-
neering. In this work, we aim to go one step further and use ILs
simultaneously as both solvents and reagents for the functionali-
zation of GO through laser-induced chemical routes. To the best of
our knowledge, this concept has yet to be addressed since IL doping
of GO has hitherto been done through usual chemical routes
[33—35]. We have chosen two imidazolium-based ILs with different
anions, 1-butyl-3-methylimidazolium chloride ([bmim]Cl) and 1-
butyl-3-methylimidazolium acetate ([bmim]Ac). It has been re-
ported that the identity of the anion can strongly influence prop-
erties such as hygroscopicity, surface tension or hydrogen-bonding
ability [30,36]; parameters that are likely to motivate different
functionalization of GO.

2. Experimental

1-Butyl-3-methylimidazolium chloride ([bmim]Cl) and 1-butyl-
3-methylimidazolium acetate ([bmim]Ac) were purchased from
Sigma-Aldrich and used as received. Aqueous solutions (ca.
40 wt.%) of [bmim]Cl (>99.0%) and [bmim]Ac (>95%) were pre-
pared in water (hereafter termed as IL-Cl and IL-Ac, respectively).
The as-prepared solutions were then stirred at room temperature
for 30 min before use. Next, GO powder (Nanolnnova Technologies)
was dispersed in IL-Cl and IL-Ac to obtain solutions of 1 wt.% GO.
After thorough stirring and sonication, the resulting GO-ILs dis-
persions were then placed in quartz cuvettes. The dispersions were
stable for few tens of hours.

Laser irradiation experiments were performed using a Nd:YAG
laser (Brilliant B, Quantel) emitting 5 ns laser pulses at 266 nm and
at a repetition rate of 10 Hz. The laser energy was set to 100 m], the
spot dimensions were ca. 64 mm? and an accumulation of 4000
pulses per gram of dispersion was applied to the solutions, under
constant stirring (Fig. 1). Subsequently, the final mixtures (denoted
as GO-IL-Cl and GO-IL-Ac) were centrifuged to separate the func-
tionalized GO sheets from the ionic liquids, with the resulting solid
then being washed with MilliQ water four times to remove phys-
isorbed IL. Each cleaning step involved the addition of MilliQ water
and centrifugation for 20 min at 2000 rpm. For GO-IL-Cl an extra
cleaning step was necessary to isolate the final solid. Water was
removed by centrifugation at 900 rpm for 4 h, and samples dried at
60°C. Finally, a control sample composed of 1wt.% GO aqueous
dispersion without any ionic liquid (GO-H,0) was synthesized
following the method used for the preparation of the other samples.

The obtained powder was characterized by high resolution
transmission electron microscopy (HRTEM) and selected area
electron diffraction (SAED) using a FEI Tecnai G2 F20 microscope
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Fig. 1. Summary of the laser irradiation experiments. GO sheets dispersed in an IL solution are irradiated with UV radiation, filtered and dried to obtain functionalized GO powder.
The molecular structures of the two types of ILs used, [bmim]|Cl (IL-Cl) and [bmim]Ac (IL-Ac), are also presented. (A colour version of this figure can be viewed online.)

operating at 200 kV. Material composition was characterized by
attenuated total reflectance Fourier transform infrared spectros-
copy (ATR-FTIR) using a Perkin-Elmer Spectrum One spectrometer.
Raman spectroscopy measurements were carried out through a
Horiba Jobin Yvon LabRAM 800 equipment. Several spectra were
acquired in the 400—2000 cm ™! range using 1 mW laser radiation
(532 nm wavelength) focused in spots of 0.5—1 pm in diameter. An
average of 3 spectra with 20 s of acquisition time was recorded for
improving the noise to signal ratio. X-ray photoelectron spectros-
copy (XPS) studies were also performed on a SPECS XPS spec-
trometer, based on a Phoibos 150 electron energy analyser,
operating in constant energy mode. The XPS spectrometer used a
monochromatic X-ray emitter of AIMg Ko (1486.74 eV). Full spectra
were acquired using an analyzer pass energy of 50 eV, whereas high
resolution spectra were acquired over smaller ranges (20eV) at
10 eV pass energy with an energy resolution of 0.6 eV (Ag 3d5/2 line
FWHM). All analyses were performed in ultra-high vacuum
(~1077 Pa). Chemical analysis of the ILs was carried out using nu-
clear magnetic resonance prior to and after laser processing to
assess possible chemical variations in structure. For these experi-
ments, a Bruker Avance II 300 system equipped with a QNP-z (1H/
13C/19F/31P) probe was used. The 'H NMR spectra of the ILs were
performed in D,0. Photocatalytic properties and hydrogen gener-
ation capability of the obtained powders were assessed using water
- methanol solutions (photoreforming). The main element of this
experimental set up was a double wall cylindrical Pyrex reactor of
125 mL volume, fitted with a gas inlet and outlet, connected to a
thermostatic bath, and placed on a magnetic stirrer. Four lamps
(15 W compact UVA lamps) surrounding the reactor provided UVA-
light radiation. In all experiments, 80 mg of catalyst was added to
50 mL of an aqueous solution of methanol (0.005M or 0.25M
concentrations). The reactor was then closed and remaining air
(~75 mL) pumped out and replaced with pure N,. Subsequently, the
lamps were turned on and the solution irradiated. Hydrogen

evolution was assessed using gas chromatography with a Shimadzu
GC-2014 chromatograph equipped with a packed column (Car-
boxen 1000 stationary phase) and a TCD detector. Injections were
performed using a six port injection valve with a fixed 2 mL volume
loop. Reinecke's salt actinometry [37] was performed to quantify
the number of photons entering the reactor when using the four
UVA lamps (5.3 x 1077Es~!). The incident power at the outer
reactor surface was calculated taking into consideration the lamp
spectrum and the hypothetical lamp power output. The assumed
lamp power is changed in the spreadsheet until the calculated
number of photons matches the actinometry outcome. In this way,
and considering the reactor geometry, it was possible to estimate
an incident irradiance of 3.1 x 10~> W cm 2. Actinometry allowed
the assessment of the photonic efficiency (¢), given by:

_ 2-Number of Hp molecules produced

Number of incident photons 100 M

3. Results and discussion

The morphology and crystallinity of raw GO (reference, Ref GO)
and laser processed GO-IL-Ac and GO-IL-Cl powder were investi-
gated extensively using TEM (Fig. 2). The reference GO powder is
composed of multi-layered (4—15 layers) platelets, between
400 nm and 1 pm in size, exhibiting flat surfaces with no folds or
remarkable structural defects, see also Supporting Material Fig. S1.
TEM selected area electron diffraction (SAED) images recorded in
regions approximately 100 nm in size reveal the characteristic 6-
fold hexagonal pattern of a sp® graphene lattice (spots at 1/d,
where d = 0.14, 0.25 nm), although the spots are slightly extended
along circular geometry (Fig. 2a inset). This pattern is characteristic
of a polycrystalline lattice with preferred orientation. The
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0.25 nm

Fig. 2. TEM images and corresponding SAED patterns of (a) raw GO (reference), (b)
GO-IL-Ac and (c) GO-IL-CI platelets. (A colour version of this figure can be viewed
online.)

stretching of the spots would have a double origin: (i) the GO
platelets can be turbostratic multilayers in nature; (ii) the under-
lying structure of the monolayer regions is nanocrystalline (sp?
domains surrounded by oxygen-bonded sp® ones), therefore the
graphitic structure of each crystal is independently rotated with
respect to each other. As a consequence, intra- and interlayer
rotation between crystallites results in circular SAED patterns,
similar to those of polycrystalline materials [38]. Microscopically,
GO-IL-Ac (Fig. 2b) platelets have similar dimensions than non
irradiated ones though appear rather wrinkled and exhibit zones
containing nanometer-sized holes. The observed wrinkles are a few
nanometers wide, but can extent to more than 100 nm in length.
Electron diffraction reveals ring patterns decorated with multiple
spots, characteristic of polycrystalline materials. The rings appear
more difusse than those associated with the raw GO reference,
especially in regions with high concentrations of holes. This is most
likely due to the crumpling and partial amorphization of the
structure (Fig. S1, Supporting Material). GO-IL-Cl flakes are similar
in structure to GO-IL-Ac, though they typically contain a higher
concentration of defects (corrugations and holes). Additionally, a
number of flakes appear to be somewhat fluffy and porous (Fig. 2c
inset) revealing a high density of holes. SAED patterns exhibit
similar graphitic rings to those in the previous samples (d =0.14,
0.25 nm). However, it turns out that in more regions of this sample
the rings are thicker and additional weak rings corresponding to
0.12 nm lattice parameter (due to the existence of a high density of
defects that produce larger distortions of the graphitic lattice) are
observed. The presence of wrinkles and holes, absent in non-
irradiated material, suggests the laser-induced creation of struc-
tural defects in GO platelets, and a steady stress-induced bending of
the GO sheets [39]. Moreover, the absence of diffraction spots
corresponding to non-graphite structures suggests that the modi-
fied material does not form superlattice-like ordered assemblies.
Raman spectroscopy measurements allow additional insight
into the structural configuration of the raw GO powder as well as
the irradiated samples (Fig. 3a, Fig. S2a). The deconvolution of the
spectra reveals dominating bands centred at around 1350 cm~! (D)
and 1590 cm~! (G), besides the contribution of less intense and
broader bands located at about 1200 cm™! (1), 1500 cm™! (D”), and
1680 cm™! (D'). The G band is generated by the relative motion of
sp?>-bonded carbon atoms (Ez¢ phonon), whereas the D band is
attributed to the breathing mode of six-fold rings and requires the
presence of defects for its activation [40]. The D/G intensity ratio is
frequently used as a figure of merit of the structural defect content
of graphene materials. As observed in Table 1, D/G ratios of raw GO
and GO-IL-Cl are very similar, 0.93 and 0.92 respectively, whereas
the D/G value corresponding to GO-IL-Ac is somehow greater
(0.97). D/G ratio of GO-H;0 sample (0.94) is also similar to that of
Ref GO. The mean distance between defects (Lp), which can be also
considered as the average graphitic domain size, and the density of
structural defects (np) can be calculated from the D/G ratio [40,41].
Nervertheless, it is important to note that the calculation method
depends on the degree of disorder in the GO platelets. Since FWHM
of G band always increases with disorder, the plot of D/G versus
FWHM(G) allows to discriminate the disorder regime of the studied
material. Fig. 3b reveals that D/G ratio of Ref GO decreases with

Table 1
Average values of D/G, Lp, and np obtained from Raman spectra.

Sample D/G Lp (nm) np (10" cm~2)
Ref GO 0.93 +0.05 1.2+03 2.27 +£0.02
GO-IL-Ac 0.97 +0.02 1.2+0.1 2.16+0.01
GO-IL-Cl 0.92 +£0.02 1.2+0.2 2.30+0.01
GO-H,0 0.94 +0.03 1.2+0.2 2.24+0.01
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Fig. 3. (a) Typical Raman spectra obtained in reference GO, GO-IL-Ac and GO-IL-Cl samples, including the deconvoluted (I, D, D”, G and D’) bands. (b) D/G ratio as a function of the
FWHM of G band obtained from all the spectra. The averaged values are depicted as open symbols. (A colour version of this figure can be viewed online.)

FWHM(G), i. e. disorder, pointing to a high defect density regime in
which a large amount of defective carbon rings does not contribute
to D band probably caused by their high distortion and opening.
Since no evident structural defects are visible by TEM analyses, the
most abundant defects would come from the sp>-bonded carbon-
oxygen functionalities. The calculated Lp is quite small, about
1.2nm, and the corresponding np is 2.27 x 10> cm~2 (Table 1).
Comparable results are witnessed in GO-HO sample (Fig. S2b,
Table 1), pointing out to a similar structure than raw GO. As
observed in Fig. 3b, the FWHM(G) obtained from GO-IL-Ac/Cl
samples is concentrated at higher values accounting for larger
structural disorder. As already stated, TEM study reveals that the
irradiated GO sheets show high concentration of corrugations and
holes, not observed in raw GO, accounting for their larger
FWHM(G). Indeed, in accordance with the larger density of holes
observed in GO-IL-Cl by TEM, GO-IL-Cl material reveals larger
FWHM(G) values than GO-IL-Ac. However, no clear tendency of D/G
versus FWHM(G) can be recognised in GO-IL-Ac and GO-IL-Cl,
probably due to simultaneous and counteracting contributions of
punctual defects and holes edges on the intensity of D and G bands
[40,42]. As a consequence, the corresponding Lp and np values of
these samples are very similar to those of Ref GO (Table 1).
Nevertheless, these similar values do not represent similar struc-
tures, as TEM evidenced larger concentration of holes and wrinkles
at irradiated samples (Fig. 2).

Compositional analysis is performed using XPS and FTIR.
Representative high resolution XPS spectra of the investigated
powders are presented in Fig. 4 and Fig. S3. Cls spectra are
deconvoluted into four Gaussian peaks C1-C4, with maxima at
284.5,286.2,287.7, and 289.5 eV, respectively. These are ascribed to
sp? carbon-carbon (C=C; C1) bonds (with some contribution from
sp> C-C bonds), as well as epoxide-hydroxyl (C-O-C, C-OH; C2),
carbonyl (C=0; C3) and carboxyl (COOH; C4) carbon-oxygen bonds
[43]. O1s signals are also deconvoluted into four component peaks
(01-04) sited at 531.3, 532.5, 533.7 and 534.9eV. These peaks
correspond to carbonyl (C=0; 01), sp> single bonded C-O (epoxy/
phenolic; 02), carboxyl (0=C-0; 03) and chemisorbed water (04)
[44,45]. Interestingly, raw GO and GO-H,0 powders do not exhibit
nitrogen component, although this element is clearly recorded in
the irradiated GO-IL-Ac/Cl samples. N1s spectra acquired in GO-IL-
Ac/Cl samples are deconvoluted into three components located at
398.5eV (N1),399.9eV (N2) and 401.5 eV (N3). These peaks can be
associated with pyridinic (N1), pyrrolic/amine (N2) and graphitic

(N3) carbon-nitrogen bonds [43]. It should be noted that pyridinic
and pyrrolic N—C bonds will also contribute to the C2 and C3 peaks
of the Cls spectrum (binding energies at 285.9 and 287.3eV)
[28,46], thus decreasing the relative contribution of hydroxyl—ep-
oxide and carbonyl groups in these components. It is known that
carbon atoms near to pyridinic nitrogens play a crucial role in
oxidation—reduction reaction processes [47]. Moreover, rGO con-
taining amino and amide species exhibit simultaneous p- and n-
type semiconducting behaviour, enhancing the efficiency of the
photocatalytic decomposition of water into H, and O, using visible
wavelengths [23,26]. Finally, the CI2p core-level spectrum of GO-IL-
Clsample was fitted by 2p32-2p1 2 spin-orbit doublets separated by
1.4 eV with an intensity ratio of 2:1. Accordingly, the spectrum can
be deconvoluted into four components, denoted as Cl1-Cl4 and
located at 200.2, 201.9, 197.6 and 198.9 eV, respectively (Fig. 4).
These signals are attributed to two major components (Cl1 and CI3)
with their corresponding satellites at larger energies (CI2, Cl4) [48].
The CI1 signal could be ascribed to chlorine covalently bonded to
carbon atoms, whereas CI3 is attributed to chloride anions phys-
isorbed on the graphene oxide platelets. It has to be noted that C-Cl
bonds would also contribute to the C2 component of C1s spectrum
[49,50].

Fig. 5 presents the C, O, and N atomic concentrations in the raw
GO and irradiated powders, as well as the relative areas of the
deconvoluted components in the high resolution C1s, O1s, and N1s
spectra. The atomic concentrations, obtained from XPS wide scans,
reveal that the concentration of carbon slightly increases after laser
irradiation, from 77% to 83% in GO-IL-Ac/Cl samples. Conversely, a
slight decrease is observed in GO-H,0 (73%). Moreover, a clear loss
of oxygen atoms is observed (from 23% in Ref GO to 12% in GO-IL-
Ac, and 11% in GO-IL-Cl), indicating that the raw GO has been
partially reduced. In contrast, an increase of oxygen, up to 27%, is
observed in GO-H,0. Correspondingly, the reduction degree (C/O)
increases from 3.4 in Ref GO to 7.1 and 7.7 in GO-IL-Ac and GO-IL-Cl,
respectively, and decreases to 2.7 in GO-H,0 sample. Moreover, a
clear incorporation of nitrogen is observed, with values approach-
ing 5% in both GO-IL-Ac/Cl samples. The atomic concentration of
chlorine in GO-IL-Cl is extremely low (0.2%) indicating that chlorine
is essentially absent in the graphene structure. In summary, laser
irradiation leads to the partial reduction and nitrogen doping of raw
GO resulting in a modified GO structure with similar atomic con-
centrations in both IL solutions. Nevertheless, the relative areas of
the deconvoluted components obtained via high resolution XPS
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reveal that the composition of the irradiated powder is slightly
different in both cases. Raw GO is characterized by a relatively large
quantity of sp® carbon and carbon bonded to oxygen species,
without the presence of nitrogen-based groups. The higher areas
correspond to the (C1, C2, 02, 03) components, indicating that,
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besides graphitic domains, most of the carbon atoms form part of
epoxy-phenolic and carboxylic functionalities. As previously stated,
there is a loss of oxygen and a nitrogen inclusion in the GO structure
after irradiation, leading to a very similar composition for both ILs.
The resulting materials present decreased concentrations of epoxy
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Fig. 5. (a) Atomic concentration and (b) relative areas of the deconvoluted components obtained in XPS analyses. (A colour version of this figure can be viewed online.)
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- phenolic functionalities when compared to carboxylic and
carbonyl groups (greater relevance of 03 in the O1s spectrum). As
already indicated, pyridinic N—C bonds contribute to C2 peak
(related to 02), leading to its increase when compared to C3-C4
components, despite the decrease in sp> carbon-oxygen bonds.
Additionally, GO-IL-CI presents a slightly larger relative content of
carboxylic groups (C4, 03) than GO-IL-Ac. In terms of nitrogen
functionalities, the most abundant in both cases is quaternary
(graphitic) N, followed by pyrrolic and pyridinic nitrogen. Never-
theless, the ratio of graphitic versus pyrrolic — pyridinic groups is
larger in GO-IL-Cl (63%) than in GO-IL-Ac (48%), whereas the per-
centage of pyridinic N is much larger in GO-IL-Ac (17%) than in GO-
IL-Cl (8%). Accordingly, it is clear that the IL anion has an effective
functionalization effect in the laser-induced doping process. In
absence of IL molecules (GO-H,O sample) the laser irradiation
triggers totally different chemical reactions in GO flakes. As evi-
denced, oxygen incorporates in the GO structure mainly as car-
boxylic (C4, 03) and epoxy/phenolic (02, C2) groups, leading to a
more oxydized GO material.

The ATR-FTIR spectrum of raw GO presents representative peaks
at3369 cm~! (-OH), 1720 cm~! (C=0),1623 cm ™! (C=C), 1220 cm ™!
(C-0-C) and 1047 cm™~! (C-0) (Fig. 6) [51,52]. After irradiation of GO
in the presence of both ionic liquids the spectra show a reduction of
the C=0 (1720cm™!) peaks, in accordance with XPS analyses
(Fig. 4). Furthermore, two broad peaks at 3340—3359 and 1566-
1578 cm™~! (assigned to —N-H bending) appear in both GO-IL-Ac
and GO-IL-Cl spectra, confirming the N-doping of the GO platelets
[52,53]. Interestingly, the appearance of the 1163 cm~! peak could
be attributed to the in-plane stretching of the imidazolium ring,
confirming the initial interaction of the IL with the GO sheets,
which is more pronounced for GO-IL-Ac [33]. Finally, the peak at
2950 cm™! (attributed to CH, groups) suggests the presence of alkyl
chains in the modified GO structure, most likely originating from
[bmim] molecules.

TH NMR spectra performed on the ILs prior to and after laser
treatment, shown in Figs. S4 and S5, exhibit essentially the same
peaks, indicating that no degradation of the supernatant ionic
liquid occurs during irradiation. This result further confirms that
radiation does not interact directly with the entities that form the
bulk ILs (i.e. [bmim], CI-, CH3COO™) leaving the material un-
changed. Previous studies regarding the laser processing of GO in
solid targets demostrated that UV radiation is absorbed by GO
flakes, inducing partial reduction by means of both photo-induced
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Fig. 6. ATR-FTIR spectra of reference GO (black), GO-IL-Ac (blue) and GO-IL-Cl (red)
samples. (A colour version of this figure can be viewed online.)

chemical and thermal effects [16,20,43,54—56]. Conversely, it is
known that imidazolium-based molecules are cationic and possess
large electron affinities and m-conjugated orbitals [57]. As a result,
such entities are prone to establish ion-exchange interactions with
negatively charged GO sheets in addition to cation-w and =-7
stacking with graphene domains [58,59]. Accordingly, it can be
assumed that GO sheets dispersed in ILs are non-covalently bonded
to a plethora of [bmim] molecules absorbed onto GO flakes [60].
Thus, the photolytic and photothermal mechanisms that GO flakes
experience when exposed to laser radiation induce reaction of
[bmim] with GO, which leads to the deoxygenation and nitrogen-
doping of GO and the formation of N-rGO (Fig. 7). Interestingly,
the anions of the ILs do not take part in the doping process, but do
influence the proportion of chemical groups in N-rGO, most likely
due to differences in the ionic strength. As a result, N-rGO syn-
thesized using a IL-Cl solvent is similar in structure to IL-Ac but
with a greater graphitic and reduced pyridinic-nitrogen content.

The photocatalytic activity of the prepared materials towards
water splitting was tested using 0.25M and 0.005 M solutions of
methanol in water, as summarized in Fig. 8. The data obtained for
the 0.25 M solution show an increasing concentration of hydrogen
with time in almost all cases. It should be noted that the photo-
catalytic activity of the raw GO precursor is very low (with a
measured gas concentration of 0.2 umolL™! at 210 min). GO-H,0
powder, which is slightly more oxidized and does not contain ni-
trogen functionalities, shows no photoactivity at all. However, GO-IL
materials exhibit larger activity than raw GO (up to 1 pmolL™! at
300 min), being GO-IL-Cl the material with the greater activity. In
this regard, it should be noted that XPS investigations indicate that
GO-IL-Cl materials contain a larger amount of graphitic nitrogen
than GO-IL-Ac materials. Moreover, and conversely to pyridinic ni-
trogen, graphitic nitrogen has been proven to decrease the work
function of graphene leading to n-type doping [61]. Accordingly, the
combined p-n electronic nature of N-rGO (n-type component from
graphitic N doping) and the interaction of graphitic nitrogen atoms
with H* can account for the enhanced photocatalytic efficiency for
hydrogen evolution due to enhanced photogenerated charge sepa-
ration and easier reduction of H', respectively [22,62]. Furthermore,
and in accordance with our results, Lavorato et al. showed that N-
doped graphene catalysts increase water splitting efficiencies with
the amount of graphitic N in its structure [63]. Consequently, it is
anticipated that irradiation of GO-IL with different experimental
conditions (leading to larger amount of graphitic N-doping) should
result in enhanced photocatalysts. Alternatively, the obtained
graphene-based materials could be also considered as metal-free
co-catalysts. Accordingly, additional measurements were per-
formed by mixing the obtained powders with identical amounts of
anatase TiO, nanoparticles (20 nm average diameter) which act as
the primary photocatalyst. Significantly, the amount of evolved
hydrogen substantially increases (more than one order of magni-
tude) for GO-IL + TiO; catalysts when compared to GO-IL materials
alone. Nevertheless, their activity is lower than the reference
anatase TiO; nanoparticles. Therefore, it can be concluded that the
GO-IL materials exhibit an adverse influence towards the TiO; ac-
tivity, probably due to the scavenging of photons entering the
reactor. Indeed, black GO-IL particles are also able to absorb the UVA
photons used in photocatalytic experiments, thus leaving less pho-
tons available for TiO, photo-driven processes. It is worth noting
that GO-H,0 + TiO, reveals no photogeneration of hydrogen at all
(not shown). Therefore, the photoactivity of the GO-based materials
seems to be effectively related to the nitrogen doping and the
reduction degree of the GO structure.

Analogous investigations were performed using 0.005M
aqueous solutions of methanol, which are more comparable to
working conditions in water splitting — photoreforming applications
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Fig. 7. Schematic illustration showing the interaction of GO with [bmim] molecules and the estimated chemical structure of the obtained N-rGO. (A colour version of this figure can

be viewed online.)

(low concentrations of organic compounds, predictably diluted
aqueous pollutants, as sacrificial agents). Alike to the results ob-
tained with 0.25M solution, GO-IL-CI powder generates more
hydrogen gas than GO-IL-Ac, although still less than the reference
TiO, photocatalyst. Remarkably, the GO-IL-Ac + TiO, mixture leads
to a much greater production of hydrogen gas than TiO, reference.
The fact that GO-IL-Ac + TiO, mixture generates more hydrogen
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Fig. 8. Generated hydrogen evolution with time in (a) 0.25M and (b) 0.005 M meth-
anol aqueous solutions. Inset in 0.25 M: zoom at low concentration hydrogen range. (A
colour version of this figure can be viewed online.)

than the separate contributions of GO-IL-Ac and TiO; confirms the
synergistic effect between these materials.

As noted previously, equation (1) was used to quantify the
photonic efficiencies of the prepared materials towards H; gener-
ation through photoreforming. Since the number of photons
entering the reactor was 5.3 x 10~ Es~! and the productions of H,
after 200 min of irradiation of the 0.25 M methanol slurries were
(according to Fig. 8a) 0.26, 0.64, 0.42,10.39, 51.5 and 89.29 pmol L~!
for GO, GO-IL-Ac, GO-IL-Cl, GO-IL-Ac + TiOy, GO-IL-Cl + TiO; and
TiO,, respectively, the corresponding average photonic efficiencies,
taking into account a reactor head space of 75mL are 0.0006,
0.0015, 0.001, 0.024, 0.12 and 0.2%, respectively. Energy efficiencies
calculated by considering an energy input into the reactor of
3.1 x 10~3Wcm™2 and a thermochemical energy associated with
the H-H bond of 283.6 k] mol~! are 0.0003, 0.00075, 0.0005, 0.012,
0.06 and 0.1% for GO, GO-IL-Ac, GO-IL-Cl, GO-IL-Ac + TiO,, GO-IL-
Cl + TiO; and TiO;, respectively. With the 0.005 M ethanol slurries
the production of Hy was lower and, consequently, the photonic
and the energy efficiencies were also lower. Nevertheless, it is
interesting to remark that efficiencies obtained with the GO-IL-
Ac + TiOy mixture after 250 min of irradiantion (0.008% photonic
efficiency and 0.004% energy efficiency) are much larger that the
ones for TiO; after the same irradiation time (0.0016% photonic
efficiency and 0.0008% energy efficiency). Since H, production with
naked TiO, photo-reforming is considered to be discrete, it is
concluded that H, concentrations are low. Nevertheless, the syn-
ergy between GO-IL-Ac and TiO, when using low concentrations of
the organic sacrificial agent leaves the door open for a further
exploration of the photocatalytic potential of those materials.

It is known that the surface of metal oxides exposed to water
becomes hydroxylated, and in this respect titanium dioxide is no
exception [64]. As a result, pyridine functionalities of dispersed N-
rGO sheets can form hydrogen bonds with hydroxyl groups present
on the nanoparticle surface [65]. Furthermore, direct Ti—pyridinic
nitrogen coordination bonds can be formed by the donor-acceptor
interaction of unsaturated Ti™ ions at the TiO; surface and dative
pyridine nitrogen atoms [65,66]. Moreover, previous studies indi-
cate that a strong pyridine-Ti coordination bond is likely to lead to
the formation of efficient electron conduction pathways [67,68]
which, in our case, are likely to enhance the photogenerated
charge-transfer processes between N-rGO and TiO,, leading to
more efficient hydrogen generation. This effect would be more
extensive in GO-IL-Ac than in GO-IL-Cl since the former contains a
higher proportion of pyridine-like nitrogen groups (obtained in the
experiments performed with 0.005M methanol solution). How-
ever, excessive concentration of methanol (e.g. 0.25 M) would lead
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to the adsorption of methanol molecules on the TiO, surface [69].
Consequently, adsorbed methanol molecules would impede the
formation of Ti-pyridinic N bonds and corresponding conduction
pathways, leading to a decrease in photocatalytic efficiency.
Further experiments were conducted using dispersions of 1 wt.%
of GO powder in aqueous solutions containing higher concentra-
tions, ca. 80 wt.%, of [bmim]Ac and [bmim|Cl, respectively named as
GO-IL-Ac-80 and GO-IL-CI-80. Our aim was to increase the N-doping
of GO and to confirm the role of the nitrogen containing groups on
the hydrogen generation rate. After laser irradiation, filtering and
drying in identical experimental conditions as in the case of the GO-
IL-Ac and GO-IL-Cl samples, the structure and composition of the
powder materials were studied. As observed in Fig. 9a, atomic con-
centration obtained through wide scan XPS reveals a carbon content
of 80% and 78% for GO-IL-Ac-80 and GO-IL-CI-80, respectively. Be-
sides, their oxygen concentration are 12% and 14%, leading to a
reduction degree (C/O) of 6.7 and 5.6 in GO-IL-Ac-80 and GO-IL-CI-
80, respectively. These C/O values are lower than the correspond-
ing ones of their low IL concentration counterparts (GO-IL-Ac/Cl),
what accounts for a somehow less efficient reduction process.
However, larger incorporation of nitrogen is observed in GO-IL-Ac-
80 (8.6%) as compared to GO-IL-CI-80 (5%) which remains compa-
rable to those of GO-IL-Ac/Cl samples. The atomic concentration of Cl
in GO-IL-CI-80 is about 2.5%. Fig. S6 shows the high resolution XPS
spectra of both materials. Interestingly, the high resolution N1s
spectra reveal different components configuration as compared to
GO-IL-Ac/Cl (Fig. 9b and c). As observed, the largest contribution
corresponds to pyrrolic/amine functionalities (N2) with ca. 60%/70%
contribution, followed by graphitic (N3; 35%/25%) and pyridinic (N1;
6.3%/6.8%) groups in GO-IL-Ac-80 and GO-IL-CI-80, respectively. It is
worth reminding that the amount of graphitic and pyridinic groups
are significatively larger in GO-IL-Ac/Cl materials. Raman spectros-
copy of GO-IL-Ac-80 and GO-IL-CI-80 reveals similar spectra to those
of GO-IL-Ac/Cl (Fig. 9d). Their corresponding (D/G, Lp, np) values are

(1.01 + 0.03,1.2 + 0.1 nm, (2.09 + 0.09) x 10" cm~2) and (1.03 =+ 0.05,
1.3+ 0.3 nm, (2.06 + 0.02) x 10'*> cm~2). These values are also very
similar to those corresponding to GO-IL-Ac/Cl materials. Besides,
FWHM(G) values are also greater than those of raw GO, what stands
for larger structural disorder (Fig. 9e).

The photocatalytic activity of GO-IL-Ac-80 and GO-IL-CI-80
materials was also studied and compared to previous water split-
ting experiments performed with GO-IL-Ac/Cl samples. Fig. 9f
shows the evolution with time of the generated hydrogen in
0.005 M methanol aqueous solutions. As observed, the generation
of hydrogen by GO-IL-Ac-80, GO-IL-CI-80, GO-IL-Ac-80 + TiOy, GO-
IL-CI-80 + TiO; is negligible as compared to reference TiO, and GO-
IL-Ac/Cl materials. It is important to remind that the quantity of
nitrogen in the structure of GO-IL-Ac —80 (8.6%) is higher than in
GO-IL-Ac/Cl and GO-IL-CI-80 materials (5%). Therefore, it appears
clear that the total amount of nitrogen is not the key parameter for
the photocatalytic efficiency. Most of the nitrogen functionalities in
GO-IL-Ac/CI-80 are pyrrolic, whereas in GO-IL-Ac/Cl are graphitic-
pyridinic. Consequently, the photocatalytic results support the hy-
pothesis that the presence of graphitic-pyridinic groups are crucial
for the enhancement of photoactivity of the graphene derivatives.
On the other hand, the laser-induced chemical paths have revealed
to be complex since the increase of IL concentration in GO disper-
sions led to the formation of pyrrolic versus graphitic-pyridinic
nitrogen species, which resulted to be counter-productive. There-
fore, new strategies should be explored for the development of
graphene materials with higher amount of graphitic-pyridinic
functionalities for increasing photocatalytic efficiency.

4. Conclusion
The results presented herein demonstrate that UV laser irradi-

ation of GO dispersions in [bmim] ionic liquids (using chloride and
acetate anions) is an effective, fast and simple route for obtaining
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N-doped rGO powder. Neither vacuum or annealing processes are
required, and the basic technique can be easily scaled to an envir-
ometally friendly and non-toxic industrial environment. Signifi-
cantly, results illustrate that the photoactivity is mainly linked to N-
doping and reduction degree of GO. Besides the IL concentration, a
change in the anion type in the ionic liquid can yield different
graphitic-pyridinic-pyrrolic-nitrogen ratios, which lead to very
different photocatalytic performances. N-rGO powder obtained
with low concentration [bmim]Cl IL exhibits higher proportions of
quaternary N and higher photoactivity functioning as photocatalyst
when compared to that synthesized with [bmim]Ac IL. Conversely,
the latter exhibits greater ratio of pyridinic-N and a remarkable
synergistic activity acting as co-catalyst with anatase nanoparticles.
High IL concentration dispersions lead to the formation of pyrrolic-
rich graphene derivatives which show no photoactivity. The inter-
play between the graphene-based photocatalyst, water, methanol
and TiO, nanoparticles has revealed very rich phenomenology
which requires further investigation.
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