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A B S T R A C T   

Nowadays, the vastly increasing demand for novel biotechnological products is supported by the continuous 
development of biocatalytic applications that provide sustainable green alternatives to chemical processes. The 
success of a biocatalytic application is critically dependent on how quickly we can identify and characterize 
enzyme variants fitting the conditions of industrial processes. While miniaturization and parallelization have 
dramatically increased the throughput of next-generation sequencing systems, the subsequent characterization of 
the obtained candidates is still a limiting process in identifying the desired biocatalysts. Only a few commercial 
microfluidic systems for enzyme analysis are currently available, and the transformation of numerous published 
prototypes into commercial platforms is still to be streamlined. This review presents the state-of-the-art, recent 
trends, and perspectives in applying microfluidic tools in the functional and structural analysis of biocatalysts. 
We discuss the advantages and disadvantages of available technologies, their reproducibility and robustness, and 
readiness for routine laboratory use. We also highlight the unexplored potential of microfluidics to leverage the 
power of machine learning for biocatalyst development.   

1. Introduction 

Biocatalysts offer environmental and economic advantages to 
accelerate industrially and pharmaceutically important biotechnolog-
ical processes (Badenhorst and Bornscheuer, 2018). Unfortunately, en-
zymes sometimes exhibit low catalytic efficiency, insufficient stability 
under operating conditions, or poor stereo- and/or regioselectivity, 

which limits their wide use (Reetz, 2013). Thus there is a need to either 
find novel enzymes in the natural diversity by (meta)genomic ap-
proaches or to improve the known enzymes by exploring the artificial 
diversity generated by protein engineering techniques (Wahler and 
Reymond, 2001). 

The process of novel biocatalysts discovery for biotechnologies, 
either from natural or artificial diversity, has been significantly 
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improved thanks to next-generation sequencing (NGS) and high- 
throughput screening (HTS), which increasingly rely on microfluidics 
(Bunzel et al., 2018; van Dijk et al., 2014). However, the most promising 
biocatalysts identified within these campaigns must be biochemically 
characterized (Fig. 1). The biochemical characterization can easily 
become the most time- and sample-demanding step, especially when 

conventional low-throughput technologies are applied (Vasina et al., 
2020). Miniaturization has been successfully utilized in modern NGS 
and HTS methods. The same opportunity arises in developing modern 
techniques for the in-depth experimental analysis of the ever-increasing 
number of identified promising biocatalysts. 

This review presents the state-of-the-art and recent trends in the 

Fig. 1. The synergy of microfluidic characterization and machine learning for developing efficient biocatalysts. Interesting biocatalysts are usually identified by 
screening natural or artificial diversity (top, grey). Microfluidics (left, light blue) facilitates the in-depth experimental analysis of biocatalysts in terms of activity, 
kinetics, stability, and structure. Machine learning (right, light green) can work with data collected by microfluidics to analyze them and make predictions, which can 
yield more efficient biocatalysts (dashed arrows). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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development, applications, and commercialization of microfluidic de-
vices for the biochemical characterization of biocatalysts. Rather than 
focusing on microfluidic HTS methods, such as droplet sorting, we direct 
the readers to several excellent reviews on this topic (Neun et al., 2020; 
Sesen et al., 2017). In addition, this review does not cover deep muta-
tional scanning (DMS), which combines HTS and NGS to assess the ef-
fects of individual mutations on the enzyme function (Fowler and Fields, 
2014; Romero et al., 2015). 

After a brief introduction to biocatalyst discovery (Section 2), we 
describe the microfluidic technology applicable to the experimental 
analysis of biocatalysts (Section 3). Section 4 provides an overview of 
currently available microfluidic techniques for analyzing key properties 
of enzymes, including the four major categories of activity, kinetics, 
stability, and structure. We evaluate the maturity, robustness, and 
readiness of the microfluidic technology for routine laboratory use. 
Finally, we highlight the advantages and opportunities of combining 
microfluidics with machine learning (Section 5). Not yet fully estab-
lished, this synergy can result in the generation and leveraging of large 
datasets in enzyme design and prediction of enzymes with improved 
target properties (Fig. 1). 

2. Discovery of novel biocatalysts 

With the many challenges humanity faces in ecology, industry, and 
healthcare, there is a growing need for novel or improved biocatalysts to 
accelerate the desired biotechnological processes. Their discovery usu-
ally requires two main steps: (i) effective screening of the available di-
versity and (ii) subsequent in-depth experimental analysis of the 
identified variants regarding the key properties needed for successful 
applications in biotechnology. The available diversity comprises natural 
diversity – represented by exponentially growing (meta)genomic data-
bases – and artificial diversity designed by protein engineering methods 
(Fig. 1). Both can be efficiently explored using well-established experi-
mental HTS protocols or semi-rational approaches combined with in 
silico methods. Yet, with the ever-increasing number of promising can-
didates, it is necessary to find new sample-efficient high-performance 
techniques that will allow their analysis. 

2.1. Natural diversity exploration 

Microorganisms represent the largest reservoir of novel enzymes on 
Earth (Simon and Daniel, 2011) while also inhabiting the widest variety 
of ecosystems (Berini et al., 2017), including extreme habitats such as 
hot springs, acid mine waters at near zero pH, or Antarctic ices (Mirete 
et al., 2016). However, approximately 99% of microorganisms are un-
cultivable (Culligan et al., 2014; Handelsman, 2004). Metagenomics 
offers the culture-independent analysis of the microbial community in 
any environmental sample (Sleator et al., 2008). After collecting the 
environmental sample and DNA isolation, several ways are available to 
screen for interesting genes. The two most popular kinds of screening are 
(i) function-based (functional metagenomics) and (ii) sequence-based 
(genetic screening) (Berini et al., 2017). 

Function-based screening for biocatalysts is based on the enzyme 
activity readout (Yang and Ding, 2014), and it is carried out mostly on 
agar plates (Ngara and Zhang, 2018). The acceleration of such screening 
campaigns is typically achieved using various HTS methods (Bunzel 
et al., 2018). These include microtiter plates (Lafferty and Dycaico, 
2004), ultrahigh-throughput HTS platforms, such as fluorescence- 
activated cell sorting (FACS) (Bonner et al., 1972) or in-vitro compart-
mentalization (Tawfik and Griffiths, 1998), and more recently, micro-
fluidic systems (Sesen et al., 2017), e.g., microcapillary arrays (Chen 
et al., 2016) or droplet sorting devices (Colin et al., 2015). The (ultra) 
high-throughput screening platforms often employ detection via fluo-
rogenic or chromogenic substrates, which might differ from the desired 
reaction and thus will be less relevant (You and Arnold, 1996). Another 
limiting factor of these approaches is the potential biased and 

insufficient expression of proteins of interest in the library host, most 
commonly Escherichia coli (Uchiyama and Miyazaki, 2009). Such 
expression issues can be addressed by choosing an alternative expression 
host strain, e.g., Bacillus subtilis, Pseudomonas putida or Pichia pastoris, 
which can significantly increase the success rate of enzyme expression 
despite higher laboratory demands (Katzke et al., 2017). 

In contrast, genetic screening methods are independent of gene 
expression. In this approach, the polymerase chain reaction (PCR) with 
primers specific for conserved regions of the genes (e.g., regions carrying 
catalytic residues for enzymes) is used (Coughlan et al., 2015). Either the 
clones in metagenomic libraries or directly the extracted environmental 
DNA can be screened in this manner (Berini et al., 2017). The main 
drawback of genetic screening is its bias toward the members of already 
known gene families (Culligan et al., 2014), whereas function-based 
screening enables the discovery of completely new classes of enzymes 
bearing low similarity to known sequences (Ufarté et al., 2015). The 
recent rapid advancement of NGS techniques, mainly the “shotgun” 
sequencing of isolated environmental DNA (Quince et al., 2017), has 
given birth to alternative in silico screening approaches (Berini et al., 
2017). Various sequence- or structure-based bioinformatics analyses can 
subsequently help to identify and rationally select attractive targets for 
further experimental testing (Höhne et al., 2010; Vanacek et al., 2018), 
although the hits are usually sequentially homologous to the known 
enzymes. 

2.2. Artificial diversity exploration 

Apart from the discovery of enzymes from natural diversity, it is also 
possible to explore the diversity created artificially, e.g., by protein 
engineering, to improve the desired properties of the enzyme (Born-
scheuer, 2016; Wahler and Reymond, 2001). As a dominant strategy, 
protein engineering uses directed evolution (Zeymer and Hilvert, 2018), 
where random mutagenesis, created, e.g., by DNA shuffling (Stemmer, 
1994) or error-prone PCR (Cadwell and Joyce, 1992), is performed to 
introduce diversity and obtain a library of mutant variants. Many studies 
also harnessed the “small-but-smart” combinatorial libraries (Jochens 
and Bornscheuer, 2010), performing the simultaneous multiple site- 
saturation mutagenesis, which in many cases increased the number of 
obtained hits (Alejaldre et al., 2021). The subsequent procedure is 
practically identical to the function-based screening mentioned above. 
The alternative strategy is rational design, where site-directed muta-
genesis (Hutchison et al., 1978) is applied to substitute a particular 
amino acid in the protein sequence with another one. This approach, 
however, usually requires information about the parental enzyme 
structure to guide the decision on the exact position and substitution 
(Yang and Ding, 2014). 

With the increasing availability of enzymology data, researchers 
started combining both of these fundamental approaches in a semi- 
rational design (Lutz, 2010). Furthermore, modern enzyme engineer-
ing leverages a number of alternative strategies to improve enzymes 
(Chen and Arnold, 2020), with the increasing use of phylogenic analyses 
and machine learning (more in Section 5). For example, ancestral 
sequence reconstruction, a method inferring the evolutionary precursors 
of extant proteins, was used to increase the thermostability and enan-
tioselectivity of a wide panel of industrial Ene reductases (Livada et al., 
2023). Thermostable and catalytically efficient luciferases were con-
structed using deep learning-based de novo protein design called hallu-
cination.(Yeh et al., 2023). 

2.3. High-throughput characterization of biocatalysts 

After identifying the hits in natural or artificial diversity, these en-
zymes must be produced and biochemically characterized. Researchers 
often need to deal with the issues associated with the expression and 
purification of soluble enzymes, yet these limitations are outside the 
scope of this article, and we refer the readers to several reviews on this 
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topic (Correa and Oppezzo, 2015; Ki and Pack, 2020). The subsequent 
biochemical characterization can be regarded as one of the bottlenecks 
in the whole process of enzyme discovery/improvement (Bornscheuer, 
2016) due to the necessity of performing an in-depth experimental 
analysis of various important enzyme properties (Roodyn, 1970; Vasina 
et al., 2022b), including activity, kinetics, stability, and structure 
(Fig. 1). Basic enzyme characterization parameters, which often need to 
be determined, are summarized in Table 1. 

Conventional biochemical characterization methods carried out in 
test tubes suffer from low throughput and high sample consumption, 
requiring large-scale protein production and purification of enzymes for 
in-depth biochemical characterization. Throughput and sample con-
sumption have been improved by integrating microtiter plate-based 
technology (Rachinskiy et al., 2009) and robotic handling (Dörr et al., 
2016). Such miniaturization of characterization techniques leads to 
increased throughput and requires much smaller amounts of proteins, 
which could be efficiently delivered by small-scale or cell-free expres-
sion and purification systems (Vasina et al., 2020). In this regard, the 
technology of microfluidics offers favorable capacities in terms of higher 
throughput and lower sample consumption (Bunzel et al., 2018; Gielen 
et al., 2015). We describe the benefits of microfluidics in Section 3, while 
in Section 4, we summarize the recent endeavors to use this technology 
for various biochemical analyses of biocatalysts. 

3. Principles of microfluidic technology 

This section describes the various microfluidic types used for the 
experimental analysis of biocatalysts, the practical aspects of micro-
fluidics, and the most commonly used detection methods. Compared to 
conventional (macroscale) instrumentation, microfluidic technologies 
offer the seductive advantages of enhanced analytical performance, low 
unit cost, reduced sample consumption, process integration, system 
automation, operational flexibility, and small instrumental footprints. 
Microfluidic systems can be categorized according to the technique used 
to manipulate the contained fluid. Primary examples include continuous 

flow microfluidics, droplet microfluidics, programmable (valve-based) 
microfluidics, and digital microfluidics. (Fig. 2A). 

3.1. Types of microfluidic systems 

3.1.1. Continuous flow microfluidics 
In continuous flows, streams of fluid pass through a channel, with 

mixing occurring through diffusion orthogonal to the flow direction. 
Fluid flow can be controlled by external pumps or other types of fluid 
handling based on electric, magnetic, or capillary forces. Flow-focusing 
schemes can be used for extremely fast mixing of reagents (on the order 
of a few microseconds), making them particularly useful for probing 
rapid reactions (Burke et al., 2013). Another type of continuous flow 
mixer uses special geometries (such as groves in the channel surface) to 
efficiently mix solutions under laminar flow conditions (Buchegger 
et al., 2012). Continuous flow microfluidic systems have been utilized 
for the biochemical characterization of enzymes since the turn of the 
21st century (Hadd et al., 1999). Hadd et al. combined flow injection 
analysis and electrophoretic separation within a microfluidic device to 
assess the inhibition of acetylcholinesterase. Current designs of auto-
mated continuous-flow microfluidics deals with valve-based micro-
fluidic technology that implements more complex and user-defined 
fluidic operations (Subsection 3.1.4). For example, coupling pneumatic 
valves with continuous flow microfluidics has led to “microfluidic large- 
scale integration” (Thorsen et al., 2002), which can be viewed as a 
microfluidic equivalent to a well plate with extra functionalities. Despite 
numerous applications in chemistry and biology, continuous flow sys-
tems are often compromised due to issues associated with Taylor 
dispersion (causing smear of the concentration distribution of the re-
action mixture composition over time), cross-contamination, and solute- 
surface interactions (Shang et al., 2017). 

3.1.2. Droplet microfluidics 
Droplet microfluidics has gained significant popularity over the past 

decade due to the elimination of dispersion effects of continuous flow 
systems by localization of reagents in isolated reaction vessels in a 
controllable and configurable manner (Ding et al., 2020). Using water- 
in-oil droplets as biochemical vessels has engendered the miniaturiza-
tion of assay volumes to sub-nanoliter (nL) scales and augmented 
analytical throughputs to above 106 assays per day (Sesen et al., 2017). 
The formation of droplets within a microfluidic device involves the 
dispersion of one fluid inside another immiscible or partially immiscible 
fluid. This process can be achieved using various techniques, and several 
recent reviews focus on the topic in great detail (Shang et al., 2017; 
Suea-Ngam et al., 2019; Zhu and Wang, 2016). One of the main limi-
tations of droplet microfluidics is the leakage of hydrophobic reagents 
out of the aqueous phase (Chen et al., 2012). This issue can be addressed 
by selecting the right surfactant/oil combination or by chemical modi-
fication of the substrate – addition of charged groups to the molecule 
(Neun et al., 2020). Alternatively, the partitioning of small molecules 
between the used phases can be turned in our favor, e.g., by a continuous 
supply of the hydrophobic reagent from the oil phase (details in Sub-
section 4.1.3) (Buryska et al., 2019) or from organic phase (Xiang et al., 
2021). 

One of the early attempts to use droplet microfluidics to study 
enzymatic reaction was shown by Song et al. (Song and Ismagilov, 
2003). They utilized a droplet-based microfluidic platform to perform 
single-turnover ribonuclease A kinetics with millisecond time resolu-
tion. Using exposure times in the range of seconds, they acquired images 
constructed from the average signal of hundreds of identical droplets. 
Droplet microfluidics has many applications in biomolecular kinetics 
due to rapid mixing, absence of dispersion, and immediate control of 
individual droplet payloads. Since then, droplet microfluidics has been 
applied to determine various biochemical characteristics of enzymes, as 
described in several excellent reviews (Ding et al., 2020; Hess et al., 
2020; Shao et al., 2022) and the latest applications covered in Section 4. 

Table 1 
The definitions of selected enzyme characteristics.  

Characteristics Parameters Definition and units 

Activity In vitro activity [kat] = [mol]/[s], [IU] = [μmol]/ 
[min]  

Specific enzyme activity [kat]/[kg], [IU]/[mg]  
pH/temperature 
optimum 

pH or temperature (◦C) with the 
maximum observed activity 

Kinetics Maximum velocity Vmax 

Turnover number kcat 

Michaelis constant KM 

Catalytic efficiency 
kcat/ KM 

Vmax = [mol]/[s], or [μmol]/[min] 
kcat = Vmax /[E]0 

KM = (k− 1 + kcat) / k1 

kcat/ KM = kcat ⋅ k1/ (k− 1 + kcat)  

half-inhibitory 
concentration IC50 

inhibitor concentration, decreasing 
enzyme activity to half  

Inhibition constant Ki Ki = IC50/(1 + [S]/KM)  
E-value 
(enantioselectivity) 

E = (kcat/ KM)R/ (kcat/ KM)S 

Stability Melting temperature Tm temperature (◦C) at which 50% of 
protein molecules are folded and 50% 
unfolded  

Half-life τ1/2 time until activity reduces to half of 
the original activity at a given 
temperature 

Structure CD ellipticity profile ellipticity (◦) dependence on 
wavelength  

Oligomeric states Number of subunits of the polypeptide 
chain  

Resolution (X-ray/ 
Cryo-EM) 

a measure of the resolvability in the 
electron density map of a molecule, 
expressed in [Å] 

The above-used abbreviations are kat = katal, IU = international unit, [E]0 =

total concentration of enzyme, k1 and k− 1 are rate constants of formation and 
reverse dissociation of Enzyme-substrate complex – ES, respectively. 
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Fig. 2. Microfluidic technology. A) Four types of fluid manipulation approaches in microfluidic devices, including continuous flow (laminar flow of two aqueous 
phases), droplet-based (aqueous drops in an immiscible oil), digital microfluidic array, where droplet movements are controlled by electrodes, and valve-based 
devices incorporating an additional level of fluid control by integrating pneumatic valves. B) Summary of the most important detection methods for monitoring 
enzymatic reactions within microfluidic platforms with schemes of the obtained signal. 
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3.1.3. Digital microfluidics 
A “digital microfluidic” (DMF) platform manipulates droplets on 

arrays of electrodes coated with a dielectric layer. Manipulating the 
electric field by varying the voltage applied to the electrodes modifies 
the wettability (Chatterjee et al., 2006) of the hydrophobic surface upon 
which the droplet moves. This allows its transport across multiple 
electrodes by sequentially applying a voltage to adjoining electrodes on 
the desired path. Digital microfluidic devices are inherently program-
mable since each electrode can be randomly addressed for actuation, 
enabling droplet movement along arbitrary paths (Hadwen et al., 2012). 
These systems also allow simultaneous control over the motion of 
multiple droplets, in theory providing a high level of parallelization 
(Eydelnant et al., 2014). 

The portability of these platforms, when coupled with detection 
mechanisms such as fluorescence, was suitable for automating a fuco-
syltransferase inhibition assay (Leclerc et al., 2019). DMF platforms 
have also been successfully applied to study homogeneous enzymatic 
assays, such as the enzyme kinetics of alkaline phosphatase and the ef-
fects of its inhibition with inorganic phosphate, producing kinetic con-
stants that are consistent with those reported in the literature (Miller and 
Wheeler, 2008). Heinemann et al. used an integrated DMF platform with 
mass spectrometry (MS) to quantify 20 enzyme assays in parallel, using 
150 nL droplets (Heinemann et al., 2017). However, despite the po-
tential for parallelization of these devices, the maximum number of 
parallel operations that could be achieved with a given number of 
electrodes was limited compared to microchannel-based droplet devices 
(Banerjee et al., 2015) due to control complexity or fabrication con-
straints. In general, DMF systems manipulate droplets that are typically 
on the order of 1 μL, approximately 1000 times larger than the volumes 
handled in microchannel-based devices, and thus may benefit less from 
the advantages of performing reactions in small volumes. 

3.1.4. Valve-based microfluidics 
Microscale valves employing pneumatic actuators can be integrated 

into microfluidic devices to achieve an additional level of control. The 
development of soft lithography (Xia and Whitesides, 1998) and the 
extension of this technique to the fabrication of integrated elastomeric 
microvalves by multilayer soft lithography (Unger et al., 2000) have 
enabled the robust production of monolithic devices composed of poly 
(dimethylsiloxane) (PDMS) with thousands of active microscale pneu-
matic valves able to rapidly and accurately control fluid flow. Valves 
control the timing of reagent flow through serially connected chambers 
for multistep reactions where reagent mixing between chambers for 
consecutive protocol steps is performed by diffusion (Fan et al., 2011). 
The valve-based devices can be programmable platforms since individ-
ually addressable valves can direct fluid flow through fluidic structures 
in a multilayer microfluidic device. PDMS valves in a hybrid PDMS-glass 
device were used to programmably manipulate nL volume scale sample 
flow through a square array to perform an enzymatic assay, mixing, and 
serial dilution (Jensen et al., 2010). Based on this concept, 114 indi-
vidually addressable valves in a programmable microfluidic device were 
used to control flow for fluid metering and active mixing, surface im-
munoassays, and cell culture (Fidalgo and Maerkl, 2011). To achieve 
higher levels of functionality, sample compartmentalization in droplets 
has previously been exploited in valve-based devices (Raj et al., 2016; 
Wu et al., 2009; Zeng et al., 2009). This led to the development of 
programmable droplet platforms by combining droplet- and valve-based 
microfluidic concepts. A valve-based device incorporating a rotary 
mixer was used to mix multiple programmable proportions of aqueous 
solutions, and the resulting solution was emulsified for transport to one 
of the several addressable storage chambers (Urbanski et al., 2006). This 
concept was extended as a screening platform for protein crystallization, 
in which programmed mixtures of buffers and protein were formulated 
in droplets and transported into micron-sized channels for incubation 
and modulation of osmotic strength (Lau et al., 2007). Performing 
multiple operations within droplet-based microfluidic platforms often 

requires the integration of an addressable unit for droplet merging and 
storing, especially when droplets must be incubated for long periods 
(Lee et al., 2018). Such storage arrays allow stable entrapment and 
merging of generated droplets in confined spaces, creating various 
profiles of concentration gradients and enabling monitoring of droplet 
populations over extended periods. Droplets cannot be manipulated 
independently in these devices since the same valves control all storage 
chambers. To address this issue, the same group proposed a highly 
addressable static droplet array, using two control layers: one for valve 
manipulation and the other to achieve manipulation of individual 
droplets (Jeong et al., 2016). 

3.2. Microfluidics for controlling mass and heat transport 

Continuous and droplet-based microfluidic systems have proved to 
be of great utility in large-scale biological experimentation since they 
consume minimal sample, operate at high analytical throughput, are 
characterized by efficient mass and heat transfer, and offer high levels of 
integration and automation. Since the typical size of a microfluidic 
channel ranges between tens to hundreds of microns, the fluid is 
laminar. Under such conditions, the mixing of fluid streams is mediated 
solely by diffusion, with the extent of mixing being defined by channel 
dimensions, the mean diffusion coefficient, and the average residence 
time. The reduced diffusion distances associated with microchannels 
shorten the diffusive mixing times, and thus diffusion can be effective in 
allowing both rapid and controllable mixing (Kuo and Chiu, 2011). 
Accordingly, due to the high surface area-to-volume ratios of micro-
fluidic channels, performing chemical reactions within these structures 
can be highly advantageous since the mass transfer can be significantly 
enhanced. Especially droplet microfluidic systems are highly useful for a 
range of enzyme-related experiments due to the enhancement of both 
mass and thermal transfer transport within droplets. 

The experimental acquisition of kinetic and thermodynamic pa-
rameters for protein unfolding or aggregation at different temperatures 
is a powerful tool for understanding the molecular mechanisms under-
lying these important biochemical processes. Therefore, precise tem-
perature control is crucial. Temperature can be controlled in different 
ways (Miralles et al., 2013), for example, by external heating modules or 
electromagnetic radiators. External heating approaches can be easily 
realized by directly placing the microfluidic device on a Peltier element. 
For instance, Yang et al. used two Peltier elements, one for heat con-
duction and the second for heat removal, arranged in an opposing ge-
ometry to generate a linear temperature gradient (between 40 and 
70 ◦C) across a microfluidic channel (Yang et al., 2014). This arrange-
ment probed protein aggregation by acquiring UV absorption spectra 
along the channel. By integrating an indium tin oxide-coated glass slide 
into a droplet-based platform, Yang et al. recently developed a droplet- 
based temperature-jump platform for assessing protein unfolding ki-
netics (Yang et al., 2022). The platform acquired UV–Vis time-resolved 
spectra over a wide range of temperatures and thus has broad utility in 
studying enzyme kinetics and protein stability at elevated temperatures. 

Electromagnetic radiation can produce heat in a microfluidic device 
by illuminating it with IR radiation, thus generating a rapid temperature 
jump in microsecond or millisecond timescales. For instance, using a 
pulsed-laser source allows the formation of a defined temperature jump 
with a square-shaped temperature profile and a duration ranging from 
microseconds to seconds (Guo et al., 2012), depending on the power of 
laser input. Compared with a commercial temperature jump apparatus, 
which requires multiple heating steps to achieve the requested tem-
perature, the radiation-induced temperature jump technique, combined 
with microfluidics, can provide temperature changes on much shorter 
timescales. This feature is especially important for studying fast bio-
molecular kinetics or conformational transitions on a microsecond scale, 
such as protein unfolding/refolding (Ebbinghaus et al., 2010; Guo et al., 
2012). For example, Ebbinghaus et al. (Ebbinghaus et al., 2010) com-
bined fluorescence microscopy and temperature jump to probe reaction 
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dynamics inside living cells with a high spatiotemporal resolution, 
allowing cooling in less than 50 ms. The fast unfolding/refolding ki-
netics and the thermodynamics of folding (between 23 ◦C and 49 ◦C) of a 
fluorescently labeled phosphoglycerate kinase were conveniently 
measured using fluorescence resonance energy transfer (FRET) 
techniques. 

Moreover, Polinkovsky et al. used a gold-coated sapphire coverslip as 
the bottom layer of a microfluidic device, providing 20 times greater 
thermal conductivity than normal glass, while the gold layer enhanced 
IR light absorption by more than two orders of magnitude (Polinkovsky 
et al., 2014). This aspect, combined with a small channel depth (0.4 μm), 
allowed the temperature to increase from 25 to 80 ◦C within 1 μs. This 
device studied the rapid folding and unfolding dynamics of DNA hair-
pins at different ionic strengths, making this approach applicable to 
probing the folding of a wide variety of proteins under native conditions. 

3.3. Microfluidic detection methods 

Microfluidic devices are compatible with diverse analytical detection 
techniques (Fig. 2B) and are thoroughly described in specialized reviews 
(Ghazal et al., 2016; Zhu and Fang, 2013). The most important detection 
methods used in microfluidic platforms are optical methods (fluores-
cence and UV–vis spectrometry), while recent studies have leveraged 
the detection capability of MS (Ha et al., 2021) (Section 4). This section 
describes how fluorescence and label-free detection methods can ac-
quire information-rich data. 

3.3.1. Fluorescence detection 
The popularity of fluorescence detection owes much to its facile 

integration with microfluidic-based formats (Măriuţa et al., 2020), its 
heightened sensitivity (down to the single-molecule level) (Jeffries 
et al., 2010; Rane et al., 2010), high information content, and ability to 
operate on ultra-short timescales (thus allowing access to rapidly 
occurring processes) (Srisa-Art et al., 2010). Unsurprisingly, a variety of 
fluorescence detectors have been used in microfluidic experiments. For 
instance, wide-field fluorescence imaging can record the fluorescent 
intensities of thousands of droplets simultaneously, providing valuable 
statistical information reflecting the heterogeneity of individual droplets 
(Hess et al., 2015). By imaging droplet arrays, single-cell enzyme ac-
tivity can also be measured (Schmitz et al., 2009). 

One limitation of fluorescence imaging for quantitative analysis is 
that the frame rate of a fluorescence charge-coupled device camera is 
typically lower than the droplet generation frequency. Thus, image- 
based fluorescence detection is limited in applications where partic-
ular droplets need to be analyzed individually on a very short time scale, 
such as droplet sorting. Single-point fluorescence detection schemes can 
solve the problem by providing information through a photodetector. 
Unlike fluorescence-based wide-field imaging of a homogeneous set of 
droplets in kinetic analysis, which provides average values by inte-
grating images over many seconds, single-point detection schemes can 
probe reaction kinetics with single droplet resolution (Clausell-Tormos 
et al., 2010; Srisa-Art et al., 2008), providing quantitative and accurate 
information relating to droplet heterogeneity. 

While fluorescence-based detection schemes provide excellent sen-
sitivities, there are also some limitations and disadvantages, e.g., pho-
tobleaching, low quantum yield, intrusion by fluorescent labels, labeling 
efficiency, etc. In this respect, it is desirable to have alternative detection 
strategies that provide for rapid and sensitive detection of analyte 
molecules in a label-free manner. 

3.3.2. Label-free detection 
UV–visible absorption detection is one of the most commonly used 

label-free detection methods. However, traditional approaches for per-
forming absorption detection within such nL-pL volumes are compro-
mised by a number of factors, including short integration times (Richard 
M. P. Doornbos et al., 1997), scattering of light at droplet interfaces 

(Gielen et al., 2016), and, most importantly, reduced optical pathlengths 
(Nightingale et al., 2020). All these obstacles significantly impede the 
transfer of a range of established biological assays (routinely performed 
in cuvettes and microtiter plates) to droplet-based systems. Several so-
lutions have been developed to overcome these limitations. Differential 
Detection Photothermal Interferometry, a quasi-pathlength independent 
approach, facilitates single-point absorbance detection in pL- and fL- 
volume droplets at frequencies exceeding 10 kHz (Maceiczyk et al., 
2017). Unlike techniques based on light attenuation, photothermal 
signals are only weakly dependent on the optical path length, making 
them highly suitable for integration with microfluidic channels. Another 
approach to circumvent the reduced optical pathlength issue was re-
ported by Yang et al., in which a droplet was squeezed through an 
extended channel section, and single-wavelength absorbance signals 
were recorded via two liquid-core waveguides embedded in close 
proximity to the channel (Yang et al., 2017). Such an approach 
enhanced absorbance sensitivity and reduced the limit of detection for 
fluorescein to 400 nM. The issue with scattering at droplet edges has 
been successfully reduced by matching the refractive index of the oil and 
aqueous phases using the addition of 1,3-bis(trifluoromethyl)-5-bromo-
benzene to the oil (Salmon et al., 2016). 

Although the approaches mentioned above have achieved low 
detection limits, they lack the broadband character of conventional 
absorption spectroscopy. Accessing the absorbance broadband spectrum 
of reaction species yields much more information than those extracted 
from a single-point readout (Mao et al., 2015; Neil et al., 2011). Probst 
et al. presented a platform for the sensitive acquisition of broad-band 
absorption spectra from rapidly moving pL-volume droplets (Probst 
et al., 2021). Combining confocal illumination with an ultra-fast 
acquisition rate and a post-processing algorithm eliminates spectral 
contribution from the continuous phase and achieves a high signal-to- 
noise ratio. 

Alongside the traditional optical methods, MS has become popular in 
recent years for its simplicity, availability, and ability to provide a label- 
free qualitative and quantitative analysis. MS combines ambient ioni-
zation techniques such as electrospray ionization (ESI) and the desorp-
tion approach (DESI). DESI-MS does not require sample preparation and 
is high-salt tolerant. Therefore, it is valuable for the screening and 
analysis of enzymatic reactions performed directly from complex reac-
tion matrices (Ho et al., 2003; Hollerbach et al., 2017; Morato et al., 
2020). 

4. Accelerated data collection by microfluidics 

The development of the microfluidic technologies covered in previ-
ous sections accelerates their adoption for biocatalyst characterization. 
Here, we summarize the recent developments and applications of 
microfluidic technologies for the in-depth experimental analysis of en-
zymes. We describe the criteria used within the literature search in 
Appendix. The selected key studies are described in Table 2 (the full 
results of our literature search can be found in the Full literature review, 
see the section Data availability). We collected additional information 
for each study (Appendix) to explore general trends within this research 
field. Next, we describe microfluidics-enabled enzyme characterization 
regarding four enzyme characteristics categories: activity, kinetics, 
stability, and structure. Within these subsections, we focus on studies 
using commercial microfluidic instruments and on the platforms which 
were systematically applied for analyzing biocatalysts. The last subsec-
tion describes the trends in this field regarding the collected information 
and bibliographic analysis, summarized in Figs. 3 and 4. 

4.1. Enzyme activity 

Catalytic activity is one of the initial pieces of information which 
scientists gather to biochemically characterize an enzyme. Yet, the 
catalytic activity highly depends on the experimental conditions 
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(Bisswanger, 2014). We have identified that microfluidics was pre-
dominantly used to test enzyme activity in vitro and in vivo. At the same 
time, fewer studies explored the operational conditions, such as pH or 
temperature profiling, or studied the preference of enzymes toward 
multiple substrates (substrate profiling) (Fig. 3). 

4.1.1. In vitro activity testing 
In vitro activity testing is a simple way of demonstrating a proof of 

concept (POC), often employing benchmark enzymes coupled with well- 
established assay and optical readout, mainly fluorescence. However, 
microchamber arrays that allow single-molecule/digital enzymology 
studies have demonstrated systematic usage and commercialization of 
the developed systems (Noji et al., 2022). As an example, Walt et al. 
made use of the microwell array disk from Quanterix to perform various 
activity and kinetic studies, e.g., understanding the subunit function of 
β-galactosidase (Li et al., 2018), studying the hysteretic behavior of 
mutant β-glucuronidase (Jiang et al., 2019), or characterizing various 
isozymes of human alkaline phosphatase in serum (Jiang et al., 2020). 

4.1.2. In vivo activity testing 
Microfluidics offers convenient in vivo activity testing at the single- 

cell level. Although this feature is predominantly used for HTS (Neun 
et al., 2019; Tesauro et al., 2015), several research groups have devel-
oped and systematically applied microfluidic systems also for quanti-
tative analysis of in vivo enzyme activity. The Fang group introduced the 
Sequential Operation Droplet Array (SODA) in 2013 (Zhu et al., 2013), 
and since then, it has been applied for various purposes, including HTS, 
single molecule analysis, or single cell analysis (Dong and Fang, 2020). 

Recently, they have developed a simplified version of SODA, called 
Manual Droplet Operation System, which they applied to a single-cell 
enzyme assay of β-galactosidase (Lou et al., 2021). 

Another systematic application of microfluidic in vivo activity testing 
was demonstrated by the Baret group. Their microfluidic chip enables 
the single-cell measurement of plankton alkaline phosphatase activity 
(Girault et al., 2018). They utilized this system to study the adaptive 
evolution of several phytoplankton species in the context of environ-
mental changes, as the alkaline phosphatase activity correlates with 
plankton growth (Girault et al., 2021). 

4.1.3. Optimal activity conditions 
The heavy dependence of catalytic activity on experimental condi-

tions drives scientists to explore different temperature ranges, pH, 
various buffers, or co-solvents (Bisswanger, 2014). Microfluidic systems 
are well suited for exploring optimal conditions, especially in their 
droplet or array formats, which enable parallelization. For example, the 
aforementioned microwell array disk from Quanterix was used to study 
temperature and pH effects on the heterogenous activity of alkaline 
phosphatase (Gilboa et al., 2022). 

Our group systematically characterized optimal conditions several 
times in the studies of haloalkane dehalogenases (HLDs) converting 
hydrophobic haloalkanes. The delivery of such hydrophobic compounds 
is difficult due to the leakage into the carrier oil and represents one of 
the significant issues of droplet microfluidics (Chen et al., 2012). We 
have overcome this issue by introducing a capillary-based microfluidic 
platform called Microfluidic Profile Explorer (MicroPEX), where the 
controlled oil-water partitioning and microdialysis of hydrophobic 

Table 2 
Selected studies using microfluidics for the characterization of biocatalysts.  

Characteristics Specific characterization Enzymes Study Enzyme variants/study 

Activity In-vitro activity testing 
alkaline-phosphatase 
β-galactosidase 
β-glucuronidase 

(Jiang et al., 2020) 
(Li et al., 2018) 
(Jiang et al., 2019) 

3 
4 
5  

In-vivo activity testing 
alkaline phosphatase 
β-galactosidase 

(Girault et al., 2021) 
(Lou et al., 2021) 

6 
3  

Temperature/pH profiling 
alkaline-phosphatase 
haloalkane dehalogenase 

(Gilboa et al., 2022) 
(Vasina et al., 2022a) 

1 
24  

Substrate profiling glycosyl transferase 
haloalkane dehalogenase 

(Xu et al., 2017) 
(Vasina et al., 2022a) 

3 
24 

Kinetics Steady-state kinetics 

alkaline phosphatase 
glutathione reductase 
haloalkane dehalogenase 
matrix metalloproteinase 
peptidylarginine deiminase 
kinase 
β-secretase 

(Jiang et al., 2020) 
(Markin et al., 2021) 
(Grant et al., 2018) 
(Hess et al., 2021) 
(Vasina et al., 2022a) 
(Guo et al., 2018) 
(Grant et al., 2022) 
(Fogarty et al., 2017) 
(Gajiwala et al., 2017) 
(Sawaguchi et al., 2021) 
(Liu et al., 2017) 

3 
~1000 

1 
3 
6 
1 
1 
1 
2 
3 
1  

Transient-state kinetics 
β-galactosidase & horseradish peroxidase 
lactate dehydrogenase 

(Hess et al., 2021) 
(Reddish et al., 2017) 

2 
1 

Stability Thermostability lysozyme (Mukhametzyanov et al., 2022) 1  

Refolding 
cytochrome c 
lysozyme 

(Mitić et al., 2017) 
(Srour et al., 2018) 
(Fatkhutdinova et al., 2022) 

1 
1 
1 

Structure Crystallization conditions lysozyme 
lysozyme & trypsin 

(Ferreira et al., 2020a) 
(Wang et al., 2019) 
(Liang et al., 2017) 

1 
3 
2  

Serial crystallography 

aspartate α-decarboxylase 
β-lactamase 
isopenicillin N synthase 
lysozyme 
methane monooxygenase 
ribonucleotide reductase 

(Monteiro et al., 2020) 
(Olmos et al., 2018) 
(Rabe et al., 2021) 
(Beyerlein et al., 2017) 
(Holmes et al., 2022) 
(Srinivas et al., 2020) 
(Fuller et al., 2017) 

2 
1 
1 
1 
1 
1 
1  

Cryo-EM structure recombinase (Mäeots et al., 2020) 1  
SAXS structure dipeptidase (Schewa et al., 2020) 2   

lysozyme (Pham et al., 2017) 2    
(Rodríguez-Ruiz et al., 2017) 1  
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Fig. 3. Practical aspects of microfluidic biochemical characterization of enzymes. For each characteristic (activity, kinetics, stability, and structure), the figure shows 
the analysis of data from the literature search (the Full literature review, see Data availability) reflecting the analyzed enzymes (left column), the performance of the 
microfluidic technology (middle column in grey), and technical aspects of microfluidics (right column). Numbers in each type of graph indicate the number of 
publications. Pictograms are explained in the legend (bottom) respectively to each column. Several detection methods are abbreviated, including fluorescence 
(fluor.), absorbance (absorb.), electrochemical detection (elch.), electrophoresis (elph.), interferometry (interf.), calorimetry (calorim.) and microscopy (microsc.). 
Other standard abbreviations are defined in the list of abbreviations. 
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substrates serve to efficiently deliver the substrate to the reaction vessels 
(Buryska et al., 2019). In the first study, MicroPEX was validated on the 
temperature profiles of 10 HLDs and substrate profiles of 8 HLDs (Bur-
yska et al., 2019). Afterwards, temperature profiles of altogether >50 
HLDs were characterized in several studies, including both engineered 
variants (Markova et al., 2021; Schenkmayerova et al., 2021) and en-
zymes discovered by in silico analysis (Vasina et al., 2022a). 

4.1.4. Substrate profiling 
Substrate profiling helps to characterize the promiscuity of enzymes. 

Moreover, the collection of substrate specificity profiles is of great use 
for the machine learning (ML) community, e.g., to predict new sub-
strates for enzymes for which activity has not been determined (Section 
5). One of the notable examples of substrate profiling is the MicroPEX, 
which was applied for a systematic experimental analysis of substrate 
profiles of HLDs (Buryska et al., 2019; Vasina et al., 2022a) by per-
forming measurements of a set of enzymes in a combinatorial manner 
with up to 27 halogenated substrates (Vasina et al., 2020). Another 
example of systematic microfluidic substrate profiling was shown by Xu 
et al. (Xu et al., 2017). Utilizing a previously developed proteomic 
microarray (Jeong et al., 2012), they searched for protein substrates for 
3 isozymes of polypeptide N-acetylgalactosaminyltransferases. Out of 
more than 16,000 human proteins, they identified 570 potential 

substrates for their model enzyme. Using cluster analysis, they revealed 
functional redundancy and specialized roles of individual isoenzymes. 

4.2. Enzyme kinetics 

More than a century ago, enzyme kinetics was described by one of 
the most straightforward and well-known fundamental equations – the 
mathematical model of Victor Henri, Leonor Michaelis, and Maud 
Menten (Johnson and Goody, 2011). This way, they introduced a 
methodology for steady-state experiments that remains the gold stan-
dard to the present time (Table 1). Microfluidics can significantly in-
crease the throughput and repeatability of kinetic data collection by 
offering low sample consumption and reaction parallelization under 
various conditions (e.g., substrate concentration, presence of inhibitors, 
pH, temperature). Here, we discuss steady-state, inhibition and 
transient-state kinetic microfluidic measurements. 

4.2.1. Steady-state kinetics 
Microfluidic systems for systematic analysis of enzyme kinetics 

typically employ fluorescence as the dominant detection method 
(Fig. 3). The highest throughput has been demonstrated by Markin et al., 
who reported a two-layer PDMS microfluidic platform with several 
pneumatic valves, called HT-MEK (High-Throughput Microfluidic 

Fig. 4. Bibliographic analysis of the microfluidic characterization of enzymes published 2017–2022. A) The number of publications and citations per year. B) A 
histogram of the number of publications based on the average number of citations per year. The studies in the inset, highlighted in the histogram by the corre-
sponding colour, are the most cited studies from our list (the Full literature review, see Data availability). C) The distribution of journals with more than one 
microfluidic characterization study publication, highlighting technology-focused (blue), crystallography (yellow) and multidisciplinary life science journals (green). 
D) The world map with highlighted countries developing or using microfluidic characterization techniques. The countries are colored based on the number of studies 
from that country, from light blue (1) to teal (~50). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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Enzyme Kinetics). This platform enables high-throughput expression, 
purification, and characterization of more than 1500 enzyme variants 
per experiment (Markin et al., 2021). More specifically, the device 
contains 1568 individual chambers that can each contain a mutated 
version of the enzyme and a microfluidic valve system that delivers 
reagents to all the mutants at the same time. The authors demonstrate 
the HT-MEK performance on the experimental analysis of 1036 single- 
site mutants of alkaline phosphatase PafA, yielding more than 5000 
kinetic and thermodynamic constants from more than 670,000 
reactions. 

Another popular method is absorbance detection (Fig. 3), mostly 
demonstrated as a POC application. An exception is the droplet-on- 
demand microfluidic device developed by the Hollfelder group, allow-
ing the generation of high-resolution concentration gradients for the 
determination of enzyme kinetics (Gielen et al., 2015). In a recent study, 
this system was upgraded by a multiplexed absorbance reader and 
validated by the characterization of a promiscuous metagenome-derived 
glycosidase active with a range of glycosidase substrates (Neun et al., 
2022). 

Alternatively, label-free detections are also increasingly employed 
systematically. The Cooks group recently reported an MS-based high- 
throughput screening platform, DESI-MS (desorption electrospray ioni-
zation mass spectrometry), for studies of enzymatic systems, such as 
acetylcholinesterase, nicotinamide N-methyltransferase, metabolites, 
lipids, or pharmaceutical molecules (Kulathunga et al., 2022; Morato 
et al., 2020, 2021). Combining DESI with liquid handling robotics, the 
system achieves throughputs of more than 1 sample/s, handling up to 
6144 samples in a single run. A similar concept utilizing an acoustic 
droplet ejection (ADE) mechanism to deliver nL droplets into the ESI-MS 
was able to perform label-free in situ enzyme kinetics of an acyl-
transferase (Zhang et al., 2021b). 

Similarly, Grant et al. developed a technique called “imaging self- 
assembled monolayers” for matrix-assisted laser desorption/ionization 
mass spectrometry for high-throughput quantitative mapping of 2592 
unique experiments conducted in flow (Grant et al., 2018). The appli-
cability of this technique toward providing kinetic constants for an 
enzyme was demonstrated by determining KM values of human gluta-
thione reductase. The same technique was applied for the cooperativity 
binding studies of calcium ions to peptidylarginine deiminase type 2 
(Grant et al., 2022). 

4.2.2. Inhibition kinetics 
Several commercial microfluidic devices are available for kinetic 

measurements and were mostly applied for inhibition studies. Desktop 
Profiler (Caliper) and the second generation LabChip® EZ Reader 
(Perkin Elmer) use a microfluidic mobility shift assay (MMSA), which is 
based on the electrophoretic separation of charged molecules with a 
fluorescent tag. Despite showing considerable applicability, MMSA often 
requires in-house synthesis of fluorescently labeled substrates. Such 
substrates were, for example, needed to study the inhibition of β-sec-
retase, an enzyme considered in the pathogenesis of Alzheimer’s disease 
(Liu et al., 2017). The popularity of MMSA for biomedical studies has 
been shown especially in the characterization of various kinases 
(Fogarty et al., 2017; Gajiwala et al., 2017; Sawaguchi et al., 2021), 
which can be routinely characterized as a service by companies such as 
Carna Biosciences. A further increase in sensitivity and throughput can 
be achieved by single-molecule microarray techniques, such as Single 
Molecule Arrays (Simoa) (Rissin et al., 2010; Wang et al., 2020). 

4.2.3. Transient-state kinetics 
Most kinetic experiments in droplet-based microfluidics have tradi-

tionally relied on averaging over large droplet numbers, and the 
inability to resolve dynamics on the single-droplet level is a recognized 
limitation. Hess et al. (Hess et al., 2021) reported a novel imaging 
approach based on stroboscopic illumination to characterize enzyme-
–inhibitor reaction kinetics within a single experiment by tracking 

individual and rapidly moving droplets containing varying substrate 
concentrations. This approach allowed the evaluation of more than 1500 
kinetic measurements in only 10 s. Furthermore, the Dyer group recently 
developed a rapid T-jump microfluidic mixer for the fast kinetic 
profiling of lactate dehydrogenase enzyme (Reddish et al., 2017). Mix-
ing time of <100 μs allowed monitoring of enzyme kinetics and 
substrate-induced conformational changes at submillisecond resolution. 

4.3. Enzyme stability 

Poor stability, misfolding, or aggregation diminish enzyme produc-
tion and prevent its further use in downstream applications. On the 
other hand, the stabilization of an enzyme and an increase in its 
robustness to sustain harsh conditions can promote its use in industrial 
processes (Liu et al., 2019). Such stabilization can be achieved, e.g., by 
immobilizing enzymes in so-called immobilized microfluidic enzyme 
reactors (IMERs). However, IMERs are not the focus of this article as 
their primary goal is not the characterization of enzymes, but rather 
intensification of a biocatalytic reaction with the focus on the product. 
Therefore, we refer the readers to excellent reviews about this topic 
(Kecskemeti and Gaspar, 2018; Meller et al., 2017; Zhang et al., 2021a). 

Although both systematic studies and applications of commercial 
microfluidic instruments have been focused on elucidating enzyme 
thermostability and refolding (Fig. 3), the kinetic stability of enzymes, e. 
g., measuring the half-life of the biocatalyst at a given temperature, 
remains an underdeveloped area for microfluidic enzymologists. Simi-
larly, to the best of our knowledge, the use of microfluidic devices to 
characterize protein solubility has not been explored. 

4.3.1. Thermostability 
Up to now, high-throughput technologies for enzyme thermostability 

characterization have been standardized to commercial instruments 
operating in microliter volume ranges, with the prominent example of 
nano-differential scanning fluorimetry (Magnusson et al., 2019). The 
only type of commercial microfluidic device for studying enzyme ther-
mostability is the chip-based differential scanning calorimeter (DSC). 
The Schick group used the fast-scanning Flash DSC 1 (Mettler Toledo, 
Switzerland) instrument for studying lysozyme unfolding with a range of 
temperature scanning rates of 5 orders of magnitude (Mukhametzyanov 
et al., 2018). By applying the same technique, the Schick group also 
studied the reversible denaturation of lysozyme in a step-scan DSC 
regime, thus enhancing the resolution and signal-to-noise ratio of the 
calorimetric curves (Mukhametzyanov et al., 2022). 

4.3.2. Refolding 
While thermostability studies usually look at the thermodynamics of 

enzyme stability, folding and refolding studies explore the kinetics of 
protein folding. The Schick group used Flash DSC 2+ (Mettler-Toledo, 
Switzerland) to study lysozyme refolding in glycerol, revealing simi-
larities in kinetic mechanisms for glycerol and water (Fatkhutdinova 
et al., 2022). Apart from commercial microfluidic calorimeters, the 
refolding kinetics was systematically studied by rapid-mixing contin-
uous flow instruments, as discussed previously in Subsection 4.2.2. The 
Hagen group developed a rapid mixing instrument called Nanospec 
(Mitić et al., 2017; Srour et al., 2018), with which they achieved 
microsecond timescale analysis of cytochrome c refolding kinetics. 

4.4. Enzyme structure 

Since the structures of enzymes determine their functions, eluci-
dating the relationships between enzyme structure and function will 
eventually accelerate their industrial applications. Therefore, deter-
mining the enzymes’ structural properties aids in revealing the mecha-
nism of enzyme reaction or exploring the possible binding modes of 
interesting ligands, ultimately leading to more effective protein engi-
neering and drug discovery campaigns. Apart from the use of X-ray 
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crystallography, nuclear magnetic resonance (NMR), and cryogenic 
electron microscopy (Cryo-EM) for atomic structure determination, 
lower-resolution structural information can provide information about 
the secondary structure (e.g., circular dichroism) or quaternary struc-
ture/hydrodynamic parameters of proteins (small-angle x-ray scat-
tering, SAXS). Within this diverse area of structural characterization, 
microfluidics has been predominantly utilized in X-ray crystallography, 
Cryo-EM, and SAXS studies. 

4.4.1. X-ray crystallography 
While several conventional crystallization techniques are actively 

pursued in both academic and industrial laboratories to produce high- 
quality protein crystals, microfluidic technology for structural biology 
was previously shown to improve protein crystallization over more 
traditional methods (Sui and Perry, 2017). There are excellent reviews 
targeting protein crystallization (Devos et al., 2021; Ghazal et al., 2016) 
and serial crystallography (Cheng, 2020; Hejazian et al., 2021), which 
provide an overview of microfluidic technology for crystallography 
studies. The following sections only describe selected recent protein 
crystallization and serial crystallography applications. 

Starting with a screening of crystallization conditions, the Fang 
group employed their SODA system to screen model enzymes with a 
micro-batch (Zhu et al., 2014) and vapor diffusion technique (Liang 
et al., 2017). As these studies could only provide initial screening of 
crystallization conditions, they upgraded the SODA system to cover the 
whole process of crystallization analysis experiments (from the purified 
protein solutions to diffraction-quality crystals), studying the crystalli-
zation of 9 model proteins (Wang et al., 2019). Another system was 
developed by Ferreira et al. (Ferreira et al., 2018), who developed a 
droplet-based microfluidic platform for studying protein phase diagrams 
of the model protein lysozyme. This system also explored the effect of 
supersaturation ratios promoting crystallization (Ferreira et al., 2020a) 
and showed that uniform crystal sizes could be achieved by promoting 
protein nucleation in micron-sized droplets through low-frequency 
pulsed sonication (Ferreira et al., 2020b). Finally, several commercial 
microfluidic systems have been developed, for example, the free inter-
face diffusion-based TOPAZ (Fluidigm) (Lee et al., 2009), the counter- 
diffusion-based CrystalSlide™ (Greiner Bio-One) (Ng et al., 2008), the 
droplet-based PlugMaker utilizing CrystalCard (Protein BioSolution) 
(Gerdts et al., 2008), or the valve-based Formulator or Mantis (For-
mulatrix). These were commercialized over 10 years ago and have been 
extensively used in many crystallographic studies (Martiel et al., 2018). 

Serial crystallography that enables time-resolved protein dynamics 
at room temperature is witnessing an increasing utilization of micro-
fluidic nozzles and mixers for sample delivery (Marinaro et al., 2022). By 
coupling acoustic droplet ejection (ADE) with a conveyor belt drive for 
serial femtosecond crystallography (SFX) experiments, Fuller et al. 
developed a drop-on-tape (DOT) technique to study photochemical 
(photosystem II) and chemical reactions (ribonucleotide reductase R2) 
over a wide range of time scales (Fuller et al., 2017). The DOT technique 
was then systematically applied, e.g., to capture the oxidation states of a 
methane monooxygenase (Srinivas et al., 2020) or to study the dynamics 
of Isopenicillin N synthase during synthesis of the precursor of all nat-
ural penicillins (Rabe et al., 2021). A different system was introduced by 
Knoška et al., who developed 3D-printed microfluidic nozzles and 
mixers coupled with megahertz X-Ray Free-Electron Laser (XFEL) to 
enhance the efficiency of mix-and-inject time-resolved SFX (Knoška 
et al., 2020). In a subsequent study, they further exploited the MHz pulse 
structure of the European XFEL to obtain two complete datasets from the 
same lysozyme crystal, paving the way for tracking sub-microsecond 
structural changes in individual crystals (Holmes et al., 2022). 

Microfluidic sample delivery has found its use also for serial syn-
chrotron crystallography (SSX). Monteiro et al. developed a 3D-printed 
X-ray-compatible microfluidic device (3D-MiXD) (Monteiro et al., 2020) 
which can be easily fabricated and used in a plug-and-play mode at X- 
ray crystallography beamlines. Apart from demonstrating the 3D-MiXD 

performance in the structural determination of aspartate α-decarbox-
ylase and lysozyme (Monteiro et al., 2020), they further exploited the 
precipitation properties of ammonium sulfate for three different en-
zymes: L-aspartate α-decarboxylase, copper nitrite reductase, and copper 
amine oxidase (Stohrer et al., 2021). 

4.4.2. Cryo-EM 
Cryo-EM is increasingly used to solve biomolecular structures 

(Callaway, 2020). Microfluidics was successfully coupled with Cryo-EM 
for protein specimens preparation, yet due to the resolution limits of 
Cryo-EM, only rather large protein complexes have been characterized, 
such as apoferritin (Huber et al., 2022) or proteasomes (Huber et al., 
2022; Schmidli et al., 2019). Recently, Mäeots et al. (Mäeots et al., 2020) 
utilized a modular microfluidic device for Cryo-EM sample preparation 
to capture early recombinase filament growth kinetics on sub-seconds 
timescales. 

4.4.3. SAXS 
Within the scope of this review, microfluidics coupled with SAXS has 

been mentioned for two relevant purposes: (i) to identify successful 
crystallization conditions for crystallization targets and (ii) to provide a 
structural characterization of target proteins. For further applications of 
microfluidic-based SAXS, we refer the readers to several detailed re-
views (Ilhan-Ayisigi et al., 2021; Silva, 2017; Watkin et al., 2017). An 
example of crystallization conditions screening to improve crystal 
morphology was demonstrated by the Teychené group (Pham et al., 
2017). The authors implemented a droplet-based microfluidics device to 
encapsulate and greatly enrich lysozyme crystallization conditions. In 
the following work, the authors integrated SAXS detection into a 
microfluidic platform to determine the radius of the gyration radius of 
lysozyme for calculating its structure envelope as a function of protein 
concentration (Rodríguez-Ruiz et al., 2017). In another study, 
Schwemmer et al. developed a centrifugal microfluidic platform entitled 
LabDisk, to characterize the radius of glucose isomerase gyration under 
varying protein and NaCl concentrations (Schwemmer et al., 2016). 
Finally, the Svergun group developed a 3D-printed microfluidic flow 
cell, transparent to terahertz frequencies (Schewa et al., 2020), that 
enabled the study of protein domain movements in solution (Schroer 
et al., 2021). 

4.5. Overview of microfluidic analysis of biocatalysts 

Our literature search provided insights into current trends for 
microfluidic characterization systems of biocatalysts. Based on the 
increasing number of citations, the bibliographic analysis revealed a 
growing interest in these systems and steady increments of new studies 
(Fig. 4A). The most cited articles offer microfluidic solutions for crys-
tallography, highlighting the importance of microfluidics and its high 
level of development for structure determination of enzymes (Fig. 4B). 
In addition, the analysis revealed that most of the studies were published 
in technology-focused journals, such as Analytical Chemistry or Lab on a 
Chip, or field-specific journals, such as IUCRJ, for crystallography 
(Fig. 4C). However, there was a relatively high number of studies in 
multidisciplinary journals targeting the general scientific community, e. 
g., Nature Communications, JACS, or PNAS. The country-based analysis 
showed that most studies originate from the USA, China, and Europe. 
(Fig. 4D). 

Concerning the systematic in-depth experimental analysis of bio-
catalysts, microfluidics has predominantly been employed for structural 
studies and enzyme kinetics (Fig. 3). As discussed above, commercial 
microfluidic solutions have been developed for all four characterization 
categories. Microfluidic approaches, including droplet-based, valve- 
based, and microwell arrays, have enabled massive parallelization of 
enzyme reactions (Shao et al., 2022). On the other hand, continuous 
flow and DMF devices have been mostly employed as POC experiments 
(Fig. 3). Concerning enzyme classes, experimental analyses using 
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microfluidic approaches have primarily focused on hydrolases (EC 3), 
oxidoreductases (EC 1), and transferases (EC 2), while other classes are 
less represented (Fig. 3). So far, most of the existing microfluidic systems 
have utilized their throughput/parallelization capabilities mostly on 
covering a wide range of experimental conditions, and less on the use of 
a wide range of different enzyme variants, except for the HT-MEK system 
(Markin et al., 2021). Large numbers of variants are typically processed 
in HTS campaigns rather than during the following characterization 
phase, which tends to be focused only on selected units or tens of hits. 
However, for efficient development of ML-based methods, in-depth 
experimental analysis of a larger number of enzyme variants will be 
necessary, e.g., to predict the function of the uncharacterized 
biocatalyst-encoding sequences (Mokhtari et al., 2021). Systematic 
implementation of microfluidic characterization methods for hundreds 
or thousands of enzyme variants would generate consistent and reliable 
datasets, critical for training of machine learning algorithms (Mazur-
enko et al., 2020). 

5. Advanced data analysis by machine learning 

In the previous sections, we have seen the exciting possibilities that 
microfluidics offers for high-throughput data collection. The generated 
data may help to identify suitable biocatalysts, determine the optimal 
enzymatic conditions, and understand the enzymatic mechanism, which 
can aid in finding better targets for protein engineering (Fig. 1). 
Microfluidic techniques accelerate data collection immensely and the 
challenge of exploring the vast space of possible candidates to be 
experimentally characterized prompts the use of advanced data analysis 
methods. A large group of methods, which have already shown signifi-
cant potential in this respect, is based on machine learning (ML). ML 
aims to find patterns in the available data that can then be used, e.g., to 
predict labels for future input. For example, for a dataset consisting of an 
enzyme sequence and its label, such as an enzyme turnover number or 
temperature optimum, a generic algorithm can be trained to capture the 
relationship between the two. Once training is complete, the resulting 
model can predict labels for new sequences. 

5.1. Machine learning in enzyme engineering 

One notable example of recent successes of ML in enzyme engi-
neering tasks is structure prediction, which has been attracting much 
attention recently due to the unprecedented power of AlphaFold 2 in 
predicting protein structures from sequences (Jumper et al., 2021). The 
EC number (Ryu et al., 2019), stability, protein solubility, and aggre-
gation propensity have also often been targets for ML-based predictions 
(Marques et al., 2021). Furthermore, the success of deep learning in 
natural language processing and image classification has influenced the 
macromolecular X-ray crystallography domain, particularly for 
sequence-based protein crystallizability prediction and crystallization 
outcome image classification tasks (Klijn and Hubbuch, 2021; Vollmar 
and Evans, 2021). 

The primary driver behind these successful ML applications for 
enzyme engineering tasks is increasing data availability: most advanced 
algorithms often use hundreds of thousands of data points for training. 
Large datasets usually come at the cost of pooling together multiple 
datasets, often collected using various techniques in many research 
groups. Heterogeneous data of this kind require significant effort to 
ensure data comparability and compatibility. Perhaps, this is why the 
most common targets for ML applications are more universal properties, 
such as protein folding or stability, rather than those determined by a 
particular enzymatic mechanism, which is more difficult to infer glob-
ally for multiple enzyme classes. 

5.2. Machine learning for focused enzyme characterization 

With the recent progress in high-throughput characterization 

methods, more enzymatic characteristics, such as specific activities, 
temperature optima, or kinetics, are attracting more and more attention 
from the ML community as the data sizes are starting to allow the 
training of ML models. The summary of the most recent studies using ML 
for experimental enzyme analysis is given in Table 3. 

The bird’s-eye view of the collected publications reveals the 
following observations. The sizes of datasets in Table 3 range from 
hundreds to thousands of measurements – the scale well within reach of 
modern microfluidic techniques. Surprisingly, most experimental data-
sets used in those studies were collected using conventional technologies 
such as 384-well microtiter plates. This implies that the tremendous 
potential of microfluidics in protein characterization covered in the 
previous sections is yet to be discovered by ML practitioners. 

The lag in ML applications might be due to the current focus of the 
groups developing microfluidic devices on the engineering part. This is 
further supported by the fact that the hardware side of microfluidics has 
already long been benefiting from ML, e.g., for device design, flow or 
droplet control in microchannels, or image processing, e.g., we refer the 
readers to the latest reviews on intelligent microfluidics (McIntyre et al., 
2022; Srikanth et al., 2021; Zheng et al., 2021). 

Another possible explanation for the lag might be the apparent 
complexity of state-of-the-art ML methods. For instance, deep learning 
alone is a broad field of computer science with multiple subdomains. 
This complexity might seem intimidating for first-time users. However, 
only a small fraction of the studies in Table 3 uses complex methods 
primarily because the datasets are not large enough to train large 
complex neural networks. Most studies use conventional ML techniques, 
such as linear regressions, support vector machines, or decision trees, 
and ML libraries are becoming increasingly available for researchers 
with limited programming experience. Moreover, a recent effort to 
further improve the accessibility of the methods is directed toward 
developing general ML pipelines (Siedhoff et al., 2021). This availabil-
ity, of course, does not obscure the fact that proper ML protocols and 
practices must be followed, e.g., according to the latest data, optimiza-
tion, model, and evaluation (DOME) recommendations covering the 
fundamental aspects of ML application in life sciences (Walsh et al., 
2021). 

5.3. Prospects for ML-based microfluidic enzymology 

Apart from exploring ML for the datasets generated by microfluidics, 
future perspectives for ML application for protein characterization 
include several directions. While the small size of a dataset usually 
precludes the use of complex deep learning architectures, recent ap-
proaches leveraging large unannotated protein databases such as Uni-
ProtKB/TrEMBL show promise in various protein engineering tasks 
(Bepler and Berger, 2021; Detlefsen et al., 2022; Kroll et al., 2022; Rao 
et al., 2019). The essence of these algorithms is to train large neural 
networks in a self-supervised manner, i.e., without any explicit labels 
provided, run these networks on the desired small set of protein se-
quences to generate protein features, and then use these features to train 
another predictor for the available labels. Many of these tools use pro-
tein sequences, although the recent deposition of structures predicted by 
AlphaFold2 for the whole UniProt database will also provide for self- 
supervised learning on structures (Jumper et al., 2021). 

Another promising direction is knowledge transfer between datasets. 
Some of the studies in Table 3 already use aggregated data collected in 
enzymatic databases, such as BRENDA or SABIO-RK, and more such 
databases will likely be used as the community is still actively investi-
gating reliability (Rembeza and Engqvist, 2021) or possible synergies, e. 
g., between the kinetic and structural data (Yan et al., 2022). However, a 
more ambitious transfer learning strategy is to train an ML predictor on 
one data set and then fine-tune it on the other, which starts to appear 
more often in drug discovery or other protein domains (Cai et al., 2020; 
Hanson et al., 2020). This strategy has the advantage of a more focused 
evaluation of a predictor for a particular target property or family, in 

M. Vasina et al.                                                                                                                                                                                                                                 



Biotechnology Advances 66 (2023) 108171

14

Table 3 
The summary of studies applying machine learning algorithms to enzyme characterization using small datasets.  

Characteristics Specific characterization Enzyme class Dataset Algorithm* Reference 

Activity substrate profiles phosphatases 218 enzymes vs. 167 substrates Hierarchical clustering (Huang et al., 
2015) 

substrate profiles ester hydrolases 147 enzymes vs. 96 substrates Hierarchical clustering, linear 
regression 

(Martínez- 
Martínez et al., 
2018) 

substrate profiles glycosyltransferase 
superfamily 1 

54 enzymes vs. 13 sugar 
electrophiles and 91 nucleophiles 
(6318 data points) 

Hierarchical clustering, Decision trees, 
KNN 

(Yang et al., 
2018) 

substrate profiles glycosyltransferase GT-A 
fold 

713 substrate profiles (6 classes) 
from CAZy GTand UniProt 
databases 

Random forest, Gboost, SVM, Bayesian 
network, logistic regression, naïve 
Bayes, decision tree, shallow NN 

(Taujale et al., 
2020) 

substrate profiles flavin-dependent 
halogenases 

87 enzymes vs. 62 substrates Hierarchical clustering (Fisher et al., 
2019) 

substrate profiles nitrilases 12 enzymes vs. 20 substrates Logistic regression, random forest, 
Gboost, SVM 

(Mou et al., 
2021) 

substrate profiles OleA thiolases 73 enzymes vs 15 substrates Random forest, naïve Bayes, shallow NN (Robinson et al., 
2020) 

substrate profiles beta-keto acid cleavage 
enzymes 

163 enzymes vs. 17 substrates Hierarchical clustering (Bastard et al., 
2014) 

substrate profiles seven enzyme families seven datasets with 1000–23,000 
enzyme-substrate pairs from the 
literature 

Shallow NNs and Gaussian processes 
trained on enzyme-substrate 
embeddings 

(Goldman et al., 
2022) 

substrate profiles four enzyme families four datasets with 450–36,600 
enzyme-substrate pairs from the 
literature 

Convolutional NNs-trained on enzyme- 
substrate embeddings 

(Xu et al., 2022) 

enantioselectivity (E 
value) 

epoxide hydrolases 136 variants from the literature SVM regression (Zaugg et al., 
2017) 

enantioselectivity (E 
value) 

Nitric oxide dioxygenase 445 variants Linear regression, elastic net, ridge 
regression, LASSO, SVM, shallow NN, 
KNN, decision trees, random forest, 
Gboost, Adaboost 

(Wu et al., 
2019) 

enantioselectivity 
(ΔΔG‡) 

an epoxide hydrolase 37 variants from the literature; PLS regression (Cadet et al., 
2018) 

Topt various enzymes 2917 data points from BRENDA Bayesian ridge, elastic net, decision tree, 
SVM regression, random forest, linear 
regression 

(Gado et al., 
2020; Li et al., 
2019) 

Topt xylanases 145 data points from BRENDA and 
UniProt 

Shallow NN, random forest, naïve Bayes, 
AdaBoost, SVM 

(Shahraki et al., 
2021) 

Topt and pHopt cellulases 163 data points from BRENDA and 
UniProt 

Shallow NN, decision tree, random 
forest, näIve Bayes, Gaussian process, 
Bagging, AdaBoost, KNN, SVM, 
XGBoost, Gboost 

(Shahraki et al., 
2020) 

Topt and pHopt lipases 138 data points from BRENDA and 
UniProt 

PCA, linear regression, ridge regression, 
random forest, LASSO, shallow NN, 
elastic net, SVM 

(Shahraki et al., 
2022) 

reaction rates based on 
experimental conditions 

a BioH enzyme 125 reactions Decision tree, SVM, Gaussian process, 
Bagging, Boosting, shallow NN 

(Wan et al., 
2021) 

redox cofactors and 
substrate specificities 

dehydrogenases, reductases, 
and methyltransferases 

8 datasets of 258–309 data points 
and 1 dataset of 953 data points 
taken from UniProt 

Gboost (Rappoport and 
Jinich, 2022) 

Kinetics kcat, KM, kcat/KM β-glucosidase B variants 100 variants Elastic net regression (Carlin et al., 
2016) 

kcat, kcat/KM, and Tm variants of eight enzymes nine datasets of 8–33 variants per 
enzyme from the literature 

pre-trained Maximum Entropy Model (Xie et al., 2022) 

kcat, KM, kcat/KM glucose oxidase variants 7 variants vs. 3 substrates at two pH 
levels 

PLS regression (Ostafe et al., 
2020) 

in vitro and in vivo kcat E.coli K-12 enzymes 497 and 234 values of kcat in vitro 
and kapp, max, respectively, from 
BRENDA, SABIO-RK, and MetaCyc 
databases 

Linear regression, PLS regression, elastic 
net, random forest, deep NN 

(Heckmann 
et al., 2018) 

in vivo kcat general 315 values of kapp, max from 
BRENDA, SABIO-RK, and MetaCyc 
databases 

Elastic net, random forest, deep NN (Heckmann 
et al., 2020) 

reaction yields phosphatases 218 enzymes vs. 157 substrates 
from the literature 

graph convolutional NN (Heid and 
Green, 2022) 

KM for natural enzyme- 
substrate combinations 

general 12,011 data points from BRENDA 
and SABIO-RK 

Deep NN, Gboost, elastic net, graph NN (Kroll et al., 
2021) 

kcat general 16,838 data points from BRENDA 
and SABIO-RK 

graph NN + convolutional NN (Li et al., 2022) 

Stability T50, Tm, Tagg epoxide hydrolase 16 variants from the literature PLS (Li et al., 2021)  
T50 P450 242 variants Gaussian process (Romero et al., 

2013) 
Structure crystal morphology lysozyme 6000 micrographs, out of which 272 

manually labeled 
convolutional NN (Huang et al., 

2022) 

(continued on next page) 
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contrast to training and evaluating the predictor on an average large 
group of enzymes. Indeed, for enzyme engineering applications, one 
might be interested in the predictive power of an ML model for a 
particular enzyme, but the performance of global predictors may vary 
significantly for a particular case (Broom et al., 2020; Huang et al., 2020; 
Potapov et al., 2009). In general, the progress in ML technology holds 
great promise for complementing experimental determination of protein 
structures, functions, and many other properties with fast computational 
predictions. Nevertheless, it also requires a comparable acceleration in 
the capacity to validate those predictions and investigate new hypoth-
eses experimentally, and microfluidics can be a pivotal technology to 
tackle this challenge. 

Finally, many future targets are waiting to be tackled by ML once the 
appropriate datasets are made available: thermodynamic parameters 
(Vasina et al., 2022a), substrate or product inhibition constants (Kok-
konen et al., 2021), protein solubility and aggregation in different 
conditions (Mazurenko, 2020), and optimal protein expression param-
eters. Apart from improving biotechnological workflows, they have the 
potential to elucidate the connections between various enzyme charac-
teristics, e.g., melting temperatures and kinetic constants (Carlin et al., 
2017). Moreover, the data availability fueled by microfluidics will allow 
investigation of such challenging topics as epistatic effects of mutations 
(Aghazadeh et al., 2021; Miton et al., 2021) or ensure data quality by 
reproducibility, which is critical for ML (Gygli, 2021). Last but not least, 
current algorithms often rely on the parameters derived from raw data, 
e.g., by fitting a particular model into it, which is typically the case of ΔG 
values (Mazurenko et al., 2018). This intermediate step introduces a 
source of subjectivity and human bias between the raw data and an ML 
predictor. Predicting raw signals has the potential to eliminate this bias, 
reveal new insights, and simplify data processing (Pucci et al., 2017; 
Zhang et al., 2021c). 

6. Conclusions and perspectives 

With the development of sustainable biotechnologies, the need for 
effective biocatalysts is constantly growing. While the artificial or nat-
ural sequence diversity can be explored efficiently using conventional 
experimental HTS protocols, the biochemical characterization of posi-
tive candidates requires introducing less laborious and more material- 
efficient techniques. Microfluidic devices have been successfully 
applied in NGS with a major effort to reduce the cost and reagent con-
sumption. Similarly, microfluidic technology has successfully been 
applied in (ultra)HTS systems and is now commercially available in 
some instruments, e.g., droplet generation and manipulation by ONYX 
and droplet sorting by STYX from Atrandi Biosciences. However, only a 
few commercial systems have been introduced for microfluidic experi-
mental analysis of enzymes. The “translation” of numerous reported 
microfluidic concepts and prototypes to commercial ready-to-use in-
struments widely available to the non-expert community is yet to be 
accomplished. 

In the past, many technical aspects have been streamlined, leading to 
a rich toolbox of current microfluidic and optofluidic technologies, thus 
creating significant potential for its successful applications in enzyme 
analysis. We expect to see significant progress in this area soon as the 
first commercial technologies (e.g., LabChip® EZ Reader by Perkin 

Elmer or Formulator by Formulatrix) are already beginning to emerge, 
taking full advantage of the tremendous potential of microfluidics for 
systematic and rapid analysis of enzyme properties. To this end, an 
obvious next step will be implementing an automated operation. In this 
way, reaction conditions may be varied and controlled in a fully auto-
mated manner, allowing for a dramatic expansion of the parameter 
space within the reaction systems under study. Combining platform 
automation and real-time feedback algorithms with the described in situ 
monitoring methods will also allow for rapid reaction optimization. An 
important aspect of these microfluidic-based instruments will be their 
ease of operation without requiring extensive technical microfluidic 
knowledge. 

Over the past two decades, microfluidics has evolved from emerging 
technology, with early studies focusing on developing platforms with 
robust functional components, to an important experimental tool that 
can process large amounts of experimental data produced at kilohertz 
frequencies. We envision that the next evolutionary phase will involve 
its association with data analysis tools, particularly those enabled by 
recent advances in ML. ML models have already been successfully 
applied for designing and operating microfluidic devices, but they are 
largely unexplored in the application of enzyme characterization data-
sets. The main problem is the absence of consistent data and gold 
standards for training the ML tools in this domain. Microfluidic plat-
forms thus gain another value in their ability to produce enormous 
amounts of homogeneous datasets needed for a successful ML applica-
tion. On the other hand, the broader availability of microfluidics for 
high-throughput experimental analysis of enzymes would also enable 
much faster validation of ML-designed proteins and would prevent 
tempting overestimation of the predictions without the actual testing. 
We assume that, in the nearest future, this strong synergy of micro-
fluidics and ML will bring groundbreaking knowledge about enzyme 
function, evolution, and catalytic mechanism and enable the rapid 
search and design of highly efficient biocatalysts for successful industrial 
applications. 
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Characteristics Specific characterization Enzyme class Dataset Algorithm* Reference  

Crystal yield, purity, and 
selectivity 

Lysozyme, Ribonuclease A, 
Cytochrome C 
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Appendix A. Appendix 

The following text describes the literature search. Since the domain 
of microfluidics is very extensive, we applied the following criteria 
focusing on the most recent studies relevant to biotechnology: (i) to 
ensure the recency of the research, we have covered the publications 
published from 2017 to 2022; (ii) studies describing microfluidic char-
acterization of proteins other than enzymes were excluded; (iii) to 
dissect, which studies cover microfluidics and which do not, we imply 
the criterium of maximum reaction volume to be below 1 μL, (iv) we 
have used the keywords of “microfluidic” or “on-chip” with “enzyme” or 
“biocatalyst”; yet (v) we have excluded the microfluidic studies applying 
(ultra)high-throughput screening (UHTS), sorting, deep mutational 
scanning (DMS), biosensing, immunoassays, or immobilized micro-
fluidic enzyme reactors (IMERs). 

The reasons for excluding microfluidic applications of enzymes listed 
in criterion (v) are as follows. HTS and sorting of enzymes serve pri-
marily for the identification of hits, as discussed in Section 2 and Fig. 1 of 
the main article. Moreover, this topic was covered in several excellent 
reviews (Longwell et al., 2017; Markel et al., 2020; Neun et al., 2020; 
Sesen et al., 2017). However, studies performing the so-called “quanti-
tative high-throughput screening” can be regarded as a part of 
biochemical characterization, and they were, therefore, included. DMS 
aims to assess the effect of each amino acid at every position within the 
enzyme but is usually based on low-depth information from HTS. We 
refer the readers to several microfluidic DMS studies published so far 
(Nikoomanzar et al., 2019; Romero et al., 2015; Roychowdhury and 
Romero, 2022). Biosensing, immunoassays, and IMERs represent ap-
plications of previously characterized enzymes and, therefore, do not fit 
into the goal of biochemical characterization. We refer the readers to the 
reviews about microfluidic biosensing (Mross et al., 2015; Nadar et al., 
2021), immunoassays (Giri et al., 2016; Shi et al., 2021), and IMERs 
(Kecskemeti and Gaspar, 2018; Meller et al., 2017; Zhang et al., 2021a). 

The selected key studies are described in Table 2 of the main article 
(the full results of the extensive literature search can be found in an 
interactive table, the Full literature review, please, see Data availabil-
ity). For each study, we have collected information about the detection 
technique applied, enzyme characteristics, and studied enzymes, 
including their enzyme commission (EC) numbers, type of microfluidic 
device as discussed in Section 3, and the number of enzyme variants 
characterized. Furthermore, we have determined the development level 
of microfluidic technologies based on the searches both in the articles 
themselves and in the citing literature. Based on this search, we have 
classified the articles into three categories: (i) proof-of-concept (POC) 
studies, which only developed and demonstrated the microfluidic sys-
tem, (ii) systematic applications, i.e., studies that employed the devel-
oped technology in at least one other study for similar characterization, 
and (iii) studies employing commercially available microfluidic tech-
nologies. Finally, we have acquired the number of citations and the 
average number of citations per year from the Web of Science database 
(results as of 18th January 2023), while we do not include citations and 
publications from 2023. 
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Măriuţa, D., Colin, S., Barrot-Lattes, C., Le Calvé, S., Korvink, J.G., Baldas, L., 
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